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PROCEDURES AND CHARTS FOR THE RAPID ESTIMATION

.
BENDING FREQUENCIES OF ROTATING BEAMS1

By Robert T. Yntema

suMMARY

Rayleigh energy approach utilizing the bending mode of the nonro-
besm in the determination of the bending frequency of the rotating

beam is evaluated and is found to give good practical results for heli-
copter blades.

Charts are presented for the rapid estimation of the first three
bending frequencies for rotating and nonrotating cantilever and hinged
beams with variable mass and stiffness distributions, as well as with
root offsets from the axis of rotation. Smne attention is also given to
the case of rotating beams with a tip mass.

.

Amore exact mode-expansion method used in evaluating the Rayleigh

G approach is also described. Numerous mode shapes and derivatives obtained
in conjunction with the frequency calculations are presented in tabular
form.

INTRODUCTION

Designers of helicopter rotor blades generally agree that accurate
means are needed for estimating the natura3 bending frequencies of the
rotating blades in order to obtain a blade design which is as free as
possible from resonant or near-resowt excitation by the periodic
loading on the rotor. Although numerous methods are available for deter-
mining the bending frequencies of rotating blades (see, for example,
refs. 1 to 14), designers have expressed the need for a simplified, yet
reasonably accurate, procedure for their determination, preferably in
t,heform of a set of charts. With this need in mind, an investigation
was undertaken which had a twofold purpose: (a) an evaluation to show
whether a Rayleigh energy approach utilizing the mode shape of the non-
rotating beam may be employed to obtain close approximations for the
natural bending frequencies of the rotating beam and (b) a set of charts‘-

~

3
lh smplified and extended version of NACARM L5@02, 1954.
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which would permit the rapid estimation of the first three bending fre-
quencies of both nonrotating and rotating hinged and cantilever blades.
The main purpose of this report is to present this evaluation and the _
frequency charts.

The Rayleigh enerw approach was evaluated with respect to such
items as various rotational speeds, higher modes, flapping-hinge or root
offset, variable blade mass and stiffness distributions, and a large con-
centrated tip mass. The evaluation was made by comparing frequency
results obtained by the Rayleigh method with results obtained by a more
accurate mode-expansion method. The details of the mode-expansion method
are given in appendix A.

The charts for frequency estimation were obtained by considering
various families of beams with selected mass and stiffness distributions
and were derived for both hinged and cantilever beams. ‘Thefrequencies of
both nonrotating and rotating cases may be estimated for (a) besms with
and without offset which have mass and stiffness distributions which can
be approximated by linear relations and (b) beams with uniform mass and
stiffness distributions plus a concentrated mass at the tip.

If the bending frequencies of the nonrotating beams sre known, a
third set of chsrts permits the estimation of the benting frequencies of
rotating beams with approximately linear stiffness distribution and arbi-
trary mass distribution.

As an adjunct to the Rayleigh approach utilizing the nonrotating-
beam mode shapes, a method is presented in appendix B which permits a
fairly accurate determination of the first bending mode and frequency of
a rotating or nonrotating hinged beam with a tip mass frczna knowledge
of the first bending mode of the nonrotating beam without a tip mass.

The report also presents bending-rnoderesults, obtained in conjunc-
tion with the frequency determination, which show the effect of the param-
eters on mode shape. Many of these mode shapes are tabulated in normal-
ized form together with their first srd second derivatives, or as mode
coefficients (coefficients of an expansion in terms of uniform-beam modes).
These results can be used in connection with the modified approach of
appendix B or in other analyses.

In order to facilitate the further application of the mode-e~ansion
method to-the accurate determination of modes and frequencies of rotating
beams with linear mass and stiffness distributions, concentrated tip mass,
and offset different from those considered herein, certain integrals which
have been evaluated are-also presented in tabular form.

*
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SYMBOLS

mode coefficients for the
(see eq. (A3))

nth rotating-beam mode

/

4
nonrotating-beam bending frequency coefficient, * m~

r~L4rotating-beam bending frequency coefficient, ~ ~
o

beam-stiffness-distribution constant (see eq. (A12))

pendulum- or zeroeth-mode coefficient (see appendix B)

lengthwise benting stiffness distribution for beam

bending stiffness of beam at root

nondimension@ bending stiffness distribution for
besm, EI(x)/EIo

.

Southwell coefficient (see eqs. (4) and (5))

zero-offset Southwe12 coefficient

offset-correction factor for Southwell coefficient

zero-offset rotati&-beam frequency coefficient; found to
be essentially independent of besn mass distribution
(seeeq. (n))

besm-mass-distribution constant (see eq. (A12))

besm length, measured from point of root fixity to tip

lengthwise mass distribution for bean (mass per unit length)

mass per unit length of beam at root

nondimensional mass distribution for beam, m(5?)/~

part of besm mass distribution which is continuous (not
concentrated)

mass concentrated at tip of beam



4

r

T

T1

x

z

Y

Y

5(x-L)

?@l)

e

5

~Jfl

e

#

$-l

%

%,

Subscripts:

n

F

t

nondimensional
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●

tip-mass ratio, %/”oL

9
lengthwise distribution of tension force in beam, T1 (X)~2

lengthwise-distributionfunction for tension force
(see eq. (2))

spanwise coordinate along beam measured from root

/nondimensional spanwise coordinate, x L

bending mode shape of nonrotating besm

bending mode shape of rotating beam

Dirac delta function

Dirac delta function in nondimensional coordhates

offset of hinge or point of fixity from axis of rotation

nondimensional offset, e/L

dmmy variables for x and X

characteristic number for nonrotathg uniform beam with
mass at tip; identical to s@.are root of nonrotating-
beam bending frequency coefficient

bending mode shape for nonrotating uniform beam normalized
at tip

rotational speed of beam

titural bending frequency

natural bending frequency

of

of

rokating beam

nonrotating beam

integral number designating natural bending mode of beam

beam cantilevered or fixed at root

tip of beam

l%imes mean differentiationwith respect to x or X umless
indicated otherwise.
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THE R.AYLEIGHAPPROACH APPLIED TO

Description

A ROTATING BEAM

The problem being treated in this report is a rotating besm Vibrati%
freely in-one of its ~tural bending modes. By equsking the kinetic energy
at zero displacement to the potential energy of both the bending and cen-
trifugal forces at maximum displacement; the following frequency equation
for vibration perpendicular to the plsne of rotation can easily be derived:

J
L
EIyn’’2dx

f
TIYn

,2ti

2=0
% ~.

+0 f?
nL

Jmyn%x J myn%
o 0

where n refers to the mode under consideration

!
L

‘1 = (q + e)m dq
x

(1)

and

(2)

Equation (1) yields an exact value for the nth bending frequency of a
beam rotating at any rotational speed Q if the nth natural bending mode
shape of the rotating beam is known for this value of Q. Unfortunately,
the mode shape is usually just as much of an unknown as the frequency is.
An estimation of the frequency may be made, however, by making use of the
well-known Rayleigh principle; that is, a mode shape which is consistent
with the constraints of the system is sssumed and is used to evsluate the
ener~ integrals which, in turn, gtve sn approximate value for the fre-
quency. In this report the nonrotating-besm mode shape is chosen as the
approxhation for the rotating-besm mode shape, and an evaluation is made
to show whether the use of such a shape yields close approximations to
the exact frequencies of the rotating besm.

If the nth mode shape of the nonrotating besm Yn is substituted

into equation (1), the first term becms exactly the square of the
bending frequency of the nonrotating besm. By denoting the ratio in the
second term by ~, a Southwell coefficient, the frequency equation takes

the following simplified form:

(3)
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This expression for ~ can be subdivided into two in&pendent parts

as follows:

(4)

%-l= %n+KIJ

where both
%%

and K are independent of

defined as follows:

~L - pL

‘J-n=
JLyn’2QLmd’
J

L
“y 2~

on

(5)

the offset e and are

In the remainder of this report ~n is referred

Southwell coefficient and Kln is referred to as

factor for the Southwell coefficient.

(6)

to as the zero-offset — -

the offset-correction

It is convenient to write ~nz in terms of a no~otating-bem

frequency coefficient ~ and the mass and stiffness of the hesm at the

root as
*

v
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(7)

.

.

By means of equations (5) and (7), equation (3) may be written as

a EIO

%n2 ‘%—
( )

+ ~n + Klne Q2 (8)

%+4

Equation (8) with ~, Kin, ~d e in nondimensional fdrm serves

as the basis for the charts for rapid freqmncy estimation to be pre-
sented subsequently in this report. These charts provide values of ~,

~n, and K1 which, in conjunction with the mass and stiffness of the
n

beam at the root, the length of the beam, the hinge offset, and the rota-
tional speed, p&mit rapid estimation of-the first three
quencies of rotating or nonrotating beams.

If the mass distribution of the blade is given by a
function, the integral expression for T1 (eq. (2)) can

bending fre-

simple snalytic
usually be

evaluated exactly; for srbitrary mass distribution, however, numerical-
integration methods such as are given in reference 15 must be employed.
Because of the nature of the numerical-integration procedure used in the
present paper, a slightly tifferent form of the expression for ~ was

found to be useful. This form canbe obtained by performi~an~ntegr~
tion by parts on the numerator of eqyation (4), and in nondimensional ‘ —
form the result appears as

n

whence the definitions for ~n and ~ln

An additional form of equation (3) is

sequent sections of this report. Dividing

(9)

are evident.

now presented for use in sub-

equation (3) by *2 yields
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This form of equation (3) was found to be useful in
Rayleigh approach. Hereinafter, in this report ~n

(lo)

the evaluation of the

/%
is referred to

n

/
as the frequency parsmeter and Q ~ is referred to as the rotational-

1
speed parsmeter. Also, for subsequent use in this report, a new zero-
offset rotating-besm frequency coefficient ~ 1 is now defined as

n

.,=%n~q2.$i!__j2 (Xi)

where the subscript F indicates that al i= the nonrotating-besm

frequency coefficient for the beam cantilevered at the root. All other
terms are for the beam with its actual root cotition, that is, either
cantilevered or hinged.

.- -. - -/,... .- It is-shown subsequently in this report””~”katthis new frequency
coefficient is insensitive to besm mass distribution and should there-
fore be useful in estimating bending frequencies for families of beams
with similar stiffne$s distributions. As is apparent from equation (11),
the fundamental frequency of the nonrotating besm treated aa a cantilever
must be known in addition to the bending frequencies of the beam with
the actual root condition (cantilevered or hinged).

Evaluation of Rayleigh Approach

In order to determine the accuracy, Use-ess, and possible limita-
tions of the Rayleigh approach based on nonrotating-besm bending modes,
the bending frequencies were calculated by this approach for a series of
rotating besms with systematically varied parameters; the frequencies
obtained in this manner are compared in this section with the results
obtained by the more exact mode-e~ansion method of appendix A. For the
cantilever besms, five uniform-cantilever-beambending modes were used in

.

“..-
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the expansion; for the hinged besms, a pendulum mode was included in
addition to five hinged-beam bending modes.

The cases studied by both methods are shown in figure 1. Both
cantilever and hinged beams sre considered for the following cases:

9

(a)

(b)
from the
offset

(c)

Uniform beams with O- and 10-percent root offset

Beams with mass and stiffness distributions varying linearly
root value to zero at the tip and with O- and 10-percent root

Uniform besms with a mass at the tip.

results for all the cases treated were obtained in nondimen-
sional form and are presented in plots in which the variation of bending
frequencies with rotational speed as predicted by the exact method of
appendix A and by the Rayleigh approach may be cmnpared. In each of the
figures introduced in this section the abscissa is the squared nondimen-
sional rotational-speed parameter (the squared ratio of rotational speed
to the first bending frequency of the nonrotating beam) and the ordinate
is the squared nondimensional frequency parameter (the squared ratio of
the nth bending frequency of the rotating besm to the nth bending fre-
quency of the nonrotatlng beam).

The range of the rotational-speed parameter in each case corresponds
roughly to that encountered in current helicopters with some latitude for
new design. Since the first bending frequency of a hinged beam is roughly
four times the first bending frequency of the same beam fixed at the rmt,
widely different scales result for the.hinged and cantilever besms. The
abscissa range also varied with tip mass because the fundamental fre-
quency of a nonrotating beam decreases with increase in tip Mss. For
the uniform cantilever beam with a tiy mass, this variation is large and
thus results in a greatly expanded abscissa scale with each increase in
tip mass. For the uniform hinged besm with a tip mass, the effect of
tip mass on the nonrotating frequency is relatively small and thm the
abscissa range was not extended appreciably with each increase in tip
mass.

Hinged besms without tip -ss.- The variation of bending frequency

with rotational speed for a uniform hinged beam is shown in figure 2 for .
offsets of O and 10 percent. For this case the Rayleigh approach may be
seen to be very accurate for all three modes throughout the entire
rotational-speed range covered. The maximm error is about 3 percent in

the frequency squared and thus only about l~percent in the frequency.

This maximum error occurs at the highest rotational speed and is roughly
the same for all three modes.
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#
Frequency results for the hinged beans with linear mass and stiff-

ness distributions are shown in figure 3 for offsets of O and 10 percent.
From this figure it is evident that the results obtained by the Rayleigh -d

method for this case are very accurate, even for the highest rotational.
speeds shown.

A comparison of the exact frequency results for the uniform and
“linear” hinged beams is presented in figure 4 for the case of zero off-
set. The difference between the results for the two beams is very marked,
particularly for the first mode. One of the most important things to be
noted in this comparison is the large difference in slope between the two

—

curves for the first mode. The average slope of each of these lines is
directly proportional to the Southwell coefficient for the first mode
(see eq. (10)), and the large difference in slope indicates that a single
value of this coefficient could not adequately predict the first-mode-
frequency variations for both beaus. This result contradicts the often
made assumption that the SouthwelJ coefficient is largely independent of
beam mass and stiffness distribution.

For the higher modes the slope of each of the lines (fig. k) is also
proportional to the Southwell coefficient, but unfortunately each beam
has a different constant of proportionality. Thus, it cannot be observed
directly from this figure that the SouthWell coefficient for the higher
modes also varies appreciably with beam characteristics; this fact, how- <
ever, is evident from the charts for frequency determination to be pre-
sented subsequently.

*

Cantilever beams without tip mass.- The frequency of rotating canti-

lever besms as well as of hinged beams is of interest in the analysis of
a teetering rotor because both symmetrical (cantilever)modes and anti-
symnetrical (hinged)modes may be excited. Consequently, in the following
paragraphs the Rayleigh approach employed in the present report is eval-
uated for cantilever beams.

Frequency results for uniform cantilever beams are presented in
figure 5. The Rayleigh results are in good agreement with the more exact
results for the second and third modes. For the first mode, however, the
maximum error is somewhat larger, about 5 percent in the frequency.
Nevertheless, the effect of offset on the frequency variation is pre-
dicted fairly accurately for all three modes.

For comparison, the results of approxinwting the first cantilever
mode by the pendulum mode of a hinged beam are also given in figure ~.
Frequency results based on this shape are seen to be always less than the
exact values. As the rotational-speed parameter increases, these results
become more and more accurate; for the lower rotational speeds, however,
the use of the nonrotating-beam first mode shape yields the most accurate

r

results. The effects of root offset on frequency are predicted by the
use of either the pendulum mode or the first cantilever bending mode. F
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The variatidn of bending frequency with rotational speed is shown
in figure 6 for a cantilever beam with linear mass and stiffness distri-
bution and with offsets of O and 10 percent. As is the case for the uni-
form cantilever, the Rayleigh frequency results, based on the nonrotating-
beam cantilever mode, are very accurate for the second and third modes,
but are not so accurate for the first mode at the bigher values of the
rotational-speed parameter; however, the effect of the offset is again
predicted fairly accurately.

The Rayleigh results based on a pendulum mode, which are also shown
in figure 6, are again seen to be always less than the exact values and
to increase in accuracy as the rotational-speed parameter increases. At
the lower rotational speeds, however, these results are again appreciably
less accurate than those based on the first ’cantileverbending mode shape.
As was the case for the uniform beam, both the pendulum mode and the first
cantilever mode predict the effects of the offset equally well.

A comparison of the frequency results for the uniform and “linear”
cantilever beams with zero offset is given in figure 7. Fran the figure
it is evident that there is only a small difference in the slope of the
exact first-mode frequency curves and thus in the Southwell coefficient
for the two beams. This-small difference, however, is predicted, although
not too accurately, by the Rayleigh approach based on the nonrotating-besm
mode shape; whereas, if a pendulum-mode approximation had been used, no
difference could have been predicted.

For the higher modes, the effects of mass and stiffness distribution
on frequency are more pronounced and lead again to the conclusion that,
in general, a single value of the Southwell coefficient cannot accurately
predict the frequency variations for beams with appreciably different mass
and stiffness distributions.

The error in the first-mode-frequency results obtained by the Ray-
leigh approach (fig. 7) is almost the same for both beams. Thus, this
error apparently is independent of beam mass and stiffness distribution;
this observation suggests the possibility of applying a correction,
based on the known errors for these particular beams, to the Rayleigh
results obtained for cantilever beams with other mass and stiffness
distributions.

Cantilever beams with tip mass.- For beams with a mass at the tip,
the results for the cantilever case suggest certain simplifications which
may be carried over to the hinged beams; thus the cantilever results are
discussed first.

The variation of bending frequency with rotational speed for a uni-
form cantilever beam with a concentrated mass at the tip and zero offset
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is given
equal to
Figure 8
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in figure 8. Results are presented for two cases: tip mass
the beam mss and tip xtmssequal to one-half the beam mass.
shows that the Rayleigh results are of the same order of accu-

racy as for the beam without tip mass - very accurate for the second and
third modes but relatively less accurate for the first mode.

It is of interest to note that for each mode the variation of the
frequency parameter with the rotational-speed parameter is almost identi-
cal for the two values of tip mass considered. In fact, if these results
are compared with those for the beam with zero tip mass in figure 5, the
variation for all three cases is seen to be practically identical.

The foregoing observations create the impression that the zero.
offset Southwell coefficient for each mode is independent of the value
of the tip mass. This assaption is true for the first mode but is mis-
leading for the higher modes as is evident from equation (10) where it

( ~/ n)2~w~ch~arLe~
can be seen that a constant of proportionality ~ *

with tip mass, is involved. Nonetheless, inasmuch as this constant of
proportionality Is defined by a ratio of nonrotating-besm frequencies, a
new rotating-beam frequency coefficient, or modified SouthWell coeffi-
cient ~n’ can be defined (see eq. (n)) which is essentially indepen-

dent of tip mass and, as will be shown subsequently, of beam mass distri-
bution as well. “

Hinged beams with tip mass.- The variation of bending frequency with
rotational speed for a uniform hinged beam with a concentrated mass at
its tip and zero offset is given in figure 9. Results are given for two
cases: tip mass equal to beam mass and tip mass equal to one-half the
beam mass. The Rayleigh results are very accurate for all three modes
over the”entire range of variables investigated, and it may be inferred,
particularly for the first mode, that the Rayleigh procedure will yield
reasonably accurate results for appreciably larger values of the
rotational-speed psrameter and tip mass.

lRmm figure 9 the frequency variation can readily be seen to be con-
siderably different for the two values of tip mass, unlike the cantilever
results of figure 8, for which the frequency variation is essentially
independent of tip mass. In an attempt to explain this difference between
the two cases, the results of figure 9 were replotted in figure 10 as a
function of the rotational-speedparameter used for the cantilever cases,
that is, the squared ratio of rotational speed to the bending frequency
of the besm in the first cantilever mode. Fran figure 10 the frequency
variation with this rotational-speedparameter may be seen to be essen-
tially independent of tip mass, as was noted f@r the cantilever. Conseq-
uently, a new constant which is insensitive to the mass distribution of
the beam is suggested. For hinged besms this const~t is also definedby
equation (11). The invariance of this constant with beam mass distribu- 1
tion is discussed subsequently in this report.
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Estimation of fundamental frequency of beam with tip mass.- A method
which permits the accurate approximation of the first bending mode shape
of a hinged beam with a tip mass from a knowledge of the first mode shape
of the bean without a tip mass is presented in appendix B. Once such a
shape has been determined, the computation of the nonrotating-beam first-
mode frequency and the associated Southwell coefficient is a relatively
simple matter. W order to illustrate the accuracy of this procedure,
nonrotating-besm bending frequencies andSoutlwell coefficients were com-
puted for the uniform beam with two values of tip mass and were compared
with the values obtained by using the exact nonrotating-beam bending mode
shapes.

For the case of a uniform be-with tip mass equal to one-half the
besm mass, the nonrotating-besm frequency squared obtained by using the
approximate shape was found to be too high by about 2 percent, and the
associated Southwell coefficient was found to be too low by about 2 per-
cent. If these errors had both been in the same direction, the first
bending frequency of the rotating beam would have differed by only about
1 percent or less from the Rayleigh result based on the exact nonrotating-
beam mode shape. However, because the
difference would be much less.

The results for the case of a tip
very similar characteristics, although
frequency was slightly higher.

Although the method of ap~ndix B

two errors tend to cancel, the

mass equal to besm mass showed
the error in nonrotating-beam

has been evaluated only for the
case of umiform beams, it is believed that the method will be-equally
accurate for beams with other mass or stiffness distributions.

CHARTS FOR BEND~G-H3EQUENCY DETERMINATION

In the preceding section, the Rayleigh approach was evaluated and
the conclusion was reached that Southwell coefficients obtained by using
nonrotating-beam mode shapes lead to reasonably accurate bending fre-
quencies of rotating beams, at least for the range of the rotational-
speed parsmeter encountered in helicopter blades. The evaluation also
showed that the Southwell coefficients can vary appreciably with beam
characteristics. This section describes a group of charts based on the
Rayleigh approach which permit the rapid estimation of bending frequencies
of rotating and nonrotating beams.
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Rotating and Nonrotating
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a

accurate, v

estimation of rotor-blade bending frequencies, nonrotating-beam frequency
coefficients, zero-offset SouthWell cdeffi.cients,snd offset-correction
factors for the SouthWell coefficients have been computed for a series of
beams with linear mass and stiffness distributions and have been c’ompiled
in chart form. The range of mass and stiffness distributions was selected
to encompass variations found in currently manufactured blades with some
latitude for new design. All the constants are based on the mode shapes of
the nonrotating beam, which were obtained by standard numerical-iteration
procedures. (See section entitled “Results for Eending Modes” for more
details regarding these procedures.)

The form of the Rayleigh energy equation which is used in conjunction
with the charts to obtain bending frequencies is equation (8) with ~n,

Kin) and e in nondimensional form:

(u)

J
where fiO

= ‘n and ‘% = ‘%L”
The charts for frequency determination

are prese%ed in figures 11 to 16. In each chart, the abscissa is the @
ratio of the beam mass per unit length at the tip of the beam to the mass
per unit length at the root; 1.0 represents a constant-mass beam and O a
beam in which the mass varies linearly to zero at the tip. Curves are
presented for three different stiffness variations: the solid curves for
beams with constant stiffness, the long-dash curves for beams where the
stiffness drops linearly to half the root value at the tip, and the long-
dash, short-dash curves for beams which have zero stiffness at the tip.

Each of these curves is faired through only three points, one at
each end and one at the middle; for the SouthWell coefficients and offset-
correcti.onfactors, this procedure should involve little error because, in
most cases, the variation is nearly ltiear, but for the frequency coeffi-
cients the fairing may appear to be questionable. However, the fairing of
these curves was not entirely arbitrary. The fundamental bending frequency
of cantilever beams with linear mass and stiffness distributions is given
in reference 16 for cases in which the mass and stiffness variations are
proportional, that is, where

EIt mt
—= —
EIO m.

f
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k

Two of the cases considered in this reference, nsmely, the ones where
both ratios equal O and 1, are identical to cases treated in this report

z and the results for these are in good agreement. The other cases treated
in reference 16, namely, those for which this ratio is 0.2, 0.4, and 0.6,
were used in fairing the curves of al for the cantilever case. The

other curves for the frequency coefficient for cantilever and hinged beams
were then faired by using this first set of curves as a guide.

Charts which permit the rapid estimation of nonrotatihg-besm fre-
quency coefficients, zero-offset Southwell coefficients, and offset-
correction factors for the Southwell coefficients are presented in fig-
ures 11 to 13 for beams hinged at the root and in figures 14 to 16 for
beams fixed at the root.

Since the zero-offset Southwell coefficient for the pendulum mode is
always unity regardless of the mass and stiffness distribution of the besm,
it is not included in figure 12. However, the offset-correction factor
for this mode is not Independent of mass distribution but is independent
of stiffness distribution, as indicated in figure 13. The pendulum-mode
results in figure 13 are also given in reference 4.

As was mentioned in the section of this report entitled “Evaluation

% of Rayleigh Approach,” the zero-offset Southwell coefficients fer the
first cantilever mode (given in fig. 15) will @eld accurate rotational
frequencies”onlyat relatively low values of the rotational-speed parameter

k and must be corrected in accordance with the results of figure 5 or 6 at
higher values of this parameter. A fixed-percentage correction cannot be
given because the error Is a function of the rotational-speed parameter.

The effect of root ftiity on the Southwell coefficients can be noted
by comparing the curves of figure 12with those of figure 15. The first-
made results for the cantilever beams should be compared with the pendulum-
mode South’wellcoefficient for the hinged beam which is always unity for
the case of zero offset. Likewise, the second-mode curves of figure 15
should be compared with the first-mode curves of figure 12, and so forth
for the higher modes. From this comparison it is seen that the effects
of root fixity on the Southwell coefficients are fairly small and can
probably be neglected for rough approximations in all cases, except for
the first cantilever mode. With this ass~tion, the results of figure 12
for the third benting mode can be used as reasonable approximations for the
fourth cantilever mode.

The variation of the Southwell coefficient may be seen frrxnfigures 12,
13, 15, and 16 to be relatively inse~itive to beam stiffness distribution,
particularly for cantilever beams but also for the hinged beams. This

% observation, coupled with the facts that frequency is proportional to the
square root of the Southwell coefficient and that the influence of the
SouthwelJ coefficient decreases for higher modes (for constant rotational

d
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“

speed), leads to the conclusion that fairly good approximations to the
Southwell coefficients for besms with other than linear stiffness distri-
butions may also be obtainable from this set of charts. The examples $

presented in the following section appear to bear out this conclusion.

Application of charts to several actual helicopter blades.- To illus-
trate the use and the type of accuracy which can be expected from the
frequency charts of figures 11 to 16 and to demonstrate that the charts
work well even when the mass and stiffness distributions of the beams are
not exactly linear, bending frequencies have been estimated for the first
three modes of four existing helicopter blades, all of which are hinged.
The following procedure, which may be made clearer by reference to the
sketches in table 1, was used in the estimation:

(a) Straight lines were faired through the mss and stiffness dis-
tributions for the blade; large values near the root were ignored.

(b) From these fairings, the effective root values ~ and EIO

and the necessary tip-root ratios were obtained.

(c)

obtained

(d)

By using these ratios, values of ~, ~, and ~1 were

from the appropriate charts (figs. 11 to 16).
*

Substitution of these constants and 6 into the Rayleigh equa-
tion (eq. (12)) yielded the bending frequencies at zero and the rated rotor ~
speed.

The mass and stiffness distributions for the blades considered are
shown on the left side of table I. The actual distribution is given by
the solid lines, and the linear approximation, selected to represent this
variation, is given by the dashed lines. These linear approximations

—

used in estimating the frequencies were the initial ones selected, and
no attempt was made to improve them in order to obtain the best agreement ““
for all modes. The frequencies shown as ‘+exact!~in table I are values
furnished by the niantiacturer.

.

A comparison of the exact and estimated results given in table I for
these bhides indicates that the estimated results are very accurate when
the crudeness of the linear approximations used is considered.

Although no comparisons have been made for cantileverblades because
sufficient information regarding such blades was not available, even more
accurate results should be obtainable for this end condition since large
values of root stiffness can be taken into account more accurately by con-
sidering the blade to be ctitilevered at the outboard edge of the stiff
region and then using the offset-correction factor for the Southwell
coefficients.
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E?esmsWith a Mass at the Tip

-a Uniform cantilever besm.- Ehqyessions defining the bending frequencies
and mode shapes of nonrotating uniform cantilever beams with a tip mass
equal to a fraction r of the beam mass are given in reference 17. These
expressions, in somewhat simpler form, are the following: the defining
relation for the frequencies is

l+cos Ocoshe- re(sin (3cosh e - cos e sinh 0) = O (13)

where

and the mode shapes are

fahen+s hen
yn(x) =sinhx- sin x + (COS x - cosh x) (14)

cosh en + COS en
-

In addition to the defining relation for the frequency, reference 17
* also gives values of en for the first three modes of cantilevers and

for several values of r. Some of these results, which are pertinent to
helicopter blades, are plotted in figure 17. Values of en2 rather than

en are plotted, because 0n2 is directly proportional to frequency and
corresponds to the nonrotating frequency coefficients ~ presented
previously.

For iarger values of r fairly accurate values of $ln2 can be

obtained frcm the following approxi~te expression:

where % is a constant for each mode which can be determined frcm the

frequency results for the largest value of r - in this case, 2. Equa-
tion (15) can also be used for nonuniform beams and for hinged as well as

< cantilever beams.
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The variation of the SouthWell zero-offset coefficient with tip mass
.

is given in figure 18 for the first three modes of a uniform cantilever
beam. These results were computed by using the mode shape of the nonro- V

tating beam presented in equation (14); the integrations were performed
analytically. Although only three points were used to establish each
curve of figure 18, the fairing should be quite accurate since the vari-
ations shown are almost linear.

The South’wellcoefficients of figure 18, in conjunction with the
nonrotating-beam frequency coefficients of figure 17, should permit very
accurate estimates for the bending frequencies of rotating uniform beams
with a tip mass except possibly for the first mode, for which a correction
may be made in accordance with results given in figure 8 for large values
of the rotational-speed parameter.

The effect of root offset has not been studied for this case, but
offset-correction factors can be obtained from the mode shapes defined by
equation (14).

Uniform hinged bean.- By using the method of reference 17, e~ressions
defining the bending frequencies and mode shapes of nonrotating uniform
hinged beams with q mass at the tip have been determined. The defining
relation for the frequency is

2r0+cothe-cot 8=0 (16)

and the mode shapes are given by

yn(x)
Sinh 8

=Si?ihx+ n sin x
sin en

(17)

●

Values of On have been determined for several values of r; these

results are given in figure 19 as frequency coefficients 13n2,together

with the frequency coefficients for the case of zero tip mass.

By using the nonrotating-beam mode shape, given by equation (17),
values for the zero-offset Southwell coefficient have been determined
for hinged beams with a tip mass and are given in figure 20. For the
pendulum modk, ~ is always unity and therefore is not shown. The

results in figures 19 and 20 together permit the rapid estimation of the
bending frequencies of rotating uniform hinged beams with a mass at the
tip. t
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.
Pendulmn-mode results for hinged beams with linear mass distribu-

tions.-
“4

The zero-offset South’wellcoefficient for the pendulum mode of

a hinged besm is equal to unity, regardless of the mass or stiffness
distribution of the beam. For the case of hinge offset, however, the
Southwell coefficient is independent of stiffness distribution but varies
considerably with besm mass distribution and with the tip mss. A chsrt
(see fig. 21) has been prepared which .penuitsthe rapid estimation of the __
offset-correction factor to the Southwell coefficient for hinged beams
with an approximately linear mass distribution plus a mass at the tip.

First bending mode frequency of nonuniform hinged beam.- A stiple
.

method is Indicated in appendix B for obtaining an approximate first
mode shape for any beam with a tip mass from a knowledge of the beam
mode shape without a tip mass. Once such a shape is determined, the
fun&mental bending frequencies of the rotating and nonrotating besms
can be determined very easily by application of the Raylelgh frequency
equation (eq. (l)).

Rotating Beams With Nonlinear Mass Distribution and

Approximately Linear Stiffness Distribution

* In the section of this report concerned with the evaluation of the
Rayleigh approach, a modified form of the zero-offset %uthwell coeffi-

X cient ~’ was shown to be insensitive to variations in beam tip mass.

This coefficient is defined for both cantilever and hinged beams by equa-
tion (n).

In order to determine whether this new coefficient is also insensi-
tive to other variations in beam mass distribution, all values of

%
presented in the charts for rapid frequency estimation were converted to

%n’” For each stiffness distribution
%’

was found to be almost con-

stant for each mode, the differences being of the same order of magnitude
as the errors inherent in the Rayleigh approach used herein.

To facilitate the estimation of bending frequencies for rotating
beams with large tip masses or possibly other nonlinear mass distribu-
tions, values of ~r for all the beams treated in the present report

are plotted in figure 22(a) for cantilever beams and In figure 22(b) for
hinged beams. Curves have been faired through the points to give average

—

values for ~ ‘ and thus for ~ for beams with approximately linear
n n

-s. stiffness distributions and with any mass distribution. In analyzing
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these results, the facts that frequency is a function
of K. and that the influence of ~ infrequency

n n
increase in mode number should be kept in mind.

From equation (11) it is apparent that the first

NACATN 3459

of the sqyare root
decreases with

bending frequency
of the nonrotating beam cantilevered at the root and the nth-benti-ngfre-
quency of the nonrotating beam with its actual end fixity are required
to determine ~n (and thus the bending frequency of the rotating beam)

from a knowledge of Ken’. In spite of this complication, however, the

charts presented should be useful in design studies involving rotating
beams with nonlinear mass distributions but with approximately linear
stiffness distributions. It should be emphasized at this point that the
constancy of ~ ‘ has been demonstrated for only a limited variety of

n
mass distributions, and thus application to blades having mass distribu-
tions radically different from those considered in this report should be
made with caution.

Rotating Besms With Mass and Stiffness Distributions

Not Representable by Foregoing Approximations a

The charts presented in this report permit the rapid estimation of
bending frequencies for rotating beams with a mass and stiffness distri- W
bution each of which can be reasonably approximated by a straight line and
for uniform beams with a tip mass; also the charts facilitate the estima-
tion of bending frequencies for rotating besms with fairly arbitrary mass
distributions and approximately linear stiffness distributions. For
other cases, for example, beams in which the stiffness varies irregularly
sold.along the blade, the basic Rayleigh energy method utilizing the modes
of the nonrotating beam may be used. Although this method has been eval-
uated in this report only for linear distributions of mass and stiffness
and concentrated tip mass, there is no reason to believe that it will not
work equally well for other distributions. All that is required in this
approach is the frequency and mode of the nonrotating beam, which can be
determinedly methods such as are described in references 2 and 15. (A
method which gives directly the required first derivative of the mode as
well as the mode shape itself is preferable.) With such results the
integrals of equation (1) can be evaluated readily by accurate numerical
methods such as those of reference 17, and Values can be obtained for the
Southwell coefficient from which the bending frequencies at say rota-
tional speed can be determined with little effort.
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Mode-Expansion Method

‘1.’

\ A more accurate mode-expansion method for determining the bending
frequencies and modes of a rotating or nonrotating beem has been devel-
oped in appendix B and has been used as a yardstick in the evaluation of
the Rayleigh approach. In this approach the lowest three bending modes
and frequencies are obtained by the solution of a fifth-order determinants
equation for cantilever beams and a sixth-order equation for ~nged hem.
In order to facilitate the further applicatim of this method to the
accurate determination of the modes and frequencies of rotating and non-
rotatzng beams, certain integrals which have been evaluated are presented
in table 11. These results permit the setting up of frequency determi-
nants for beams with any combination of linear mass and stiffness distri-
bution, concentrated tip mass, offset, and rotational speed (including
many combinations not treated herein). With the evaluation of additional
integrals (sune of which are gi-n in ref. 18), these results can be used
to determine the bending frequencies and modes for rotating and nonrotating
beams with concentrated mass at other locations or with higher order mass
and stiffness distributions. If practice dictates the necessity of addi-
tional charts for other combinations of linear mass and stiffness distri-
bution and tip mass or for parabolic besm mass and stiffness distributions,
it might be advantageous to use this method to set up such charts if high-
speed computing machines suitable for solv5.ngthe determinantal equtions
are available.

.
Vibration in Planes Other Than Those Perpendicular

to Plane of Rotation

The frequency charts and procedures for frequency determination of
this report have all been directed toward the determination of frequencies
for uncoupled bending vibrations perpendicular to the plane of rotation.
Ih cases where the principal axis of the blade cross sections (axis about
which the stiffness is a minimmn) is not parallel to the plane of rotation,
natural bending vibrations having the lowest frequency will take place
perpen~c~ar to the chord. An extreme case of such vibrations would
occur if the blade chord were perpendicular to the plane of rotation, in
which case, blade vibrations would take place in the plane of rotation.

IYequencies of vibration, when the blade chord is inclined at any
angle $ with the plane of rotation, canbe determined from the fre-
quencies of vibration perpendicular to the plane of rotation by mans of
a simple formula proposed in reference 19: namely,



22 NACA TN 3459

where ~ is the frequency of bending vibrations perpendicular to the
L

plane of rotation and ~ is the frequency for bending vibrations in a
lJ-

plane making an angle $ with the axis of rotation.

At large angles of attack, the indicated correction may be signifi-
cant for the lower modes. However, inasmuch as ~L2 is usually 5 to

10 times as large as f12 for the lowest bending mode of helicopter blades
and even larger for the higher modes, in most cases the angle of attack
of the blade will have little effect on bending frequency and may be dis-
regarded. This fact is significant since it indicates that blade fre-
quency will not change appreciably during each revolution because of
cyclic-pitch changes and thus may be assumed to be constant.

In the process of

RESULTS FOR BENDING MODES

obtaining the frequency results presented in the
preceding sections of this paper, a large number of mode shapes of both
rotating and nonrotating beams with various mass and stiffness distribu-
tions were determined. These results are presented in tabular form in
order to make them more useful in analytical studies and are compared in
this section with each other in order to shuw the effect of the various
parameters on mode shape.

Nonrotating Besms

The first three mode shapes for nine nonrotating cantilever and nine
nonrotating hinged berms with different combinations of linear mass aqd
stiffness distributions are given in tables 111 and IV, together with their
first and second derivatives. These results were obtained by standard
numerical-iterationprocedures. For the cantilever besms (table III), the
procedure of reference 15 was used tith 10 stations; step-integration
procedures were used for the first mode, and equivalent-load=thods were
used for the second and third modes. For the hinged besms (table IV), a
matrix-iteration procedure using weighted integration matrices sWlar to _
those given in reference 21 was employed with 15 stations. More stations
were needed for the hinged besms than for the cantilever beams because the
third hinged mode has one more loop or node than the third cantilever mode.

0

-.
-.

In order to illustrate the accuracy of the nonrotating mode shapes
computed by this method, the exact results given for the uniform beam in
reference 20 are also included in tables III and IV. A canparison of the ~
results indicates that the error of the present results is less than
1 percent. Nonrotating mode shapes are showh for the hinged beams in
figure 23 and for the cs.ntileverbeans in figure 24.

—
f
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Rotating Beams

The mode snd frequency results for rotating beams were obtained in
tke present paper by the method of appendix A. This method yields mode
coefficients which, when multiplied by the mode shapes of nonrotating
uniform beams normalized to positive tip values and smmed, give the mode
shapes of the rotating besm. These coefficients can also be used in con-
junction with the spanwise derivatives of the uniform-be- mode shapes to
obtain similar derivatives for the rotating beams. The required uniform-
besm modes and derivatives are given in reference 20, but they are not all
normalized to positive tip deflections and thus certain sign modifications
are necessary. These modes and the first two derivatives are also given
in tables III and IV with the proper signs and tip deflections.

All the mode coefficients for rotating beams obtained in the present
investigation are given in tables V and VI. These coefficients have been
normalized in such a manner that the modes obtained by using them will
have the same tip deflection as the uniform-beam modes used in the compu-
tation. Table V contains the results for the hinged beams, whereaa
table VI contains those for the cantilever beams.

Canparison of Rotating and Nonrotating Beans
.

Hinged beams.- The mode shapes of a umiform hinged besm for zero
rotational speed and a rotational speed Q equal to the first bending

-* frequency WI sre shown in figme 25. A comparison of these shapes

indicates that although some differences between the modes exist, they
are relatively small, particularly for the higher modes.

A s~lar comparison is given in figure 26 for hinged beams with
linear mass and stiffness distributions, both zero at the tip. For this
case the difference in mode shapes is very smalJ for all three modes;
this undoubtedly accounts for the fact that the Rayleigh approach was
found to be very accurate for this case. (See fig. 3.)

By comparing the results of figures 25 and 26, a large disagreement
may be noted between the mode shapes of the two besms; this disparity
apparently accounts for the substantial differences in the Southwell.
coefficients for the two beams.

The calculated mode shapes have not been plotted in a form which
shows the effect of offset on the mode shapes of rotating besms; but by
comparing the mode coefficients for O- and 10-percent offsets in
table V, the effect may be seen to be small.
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Cantilever beams.- The modes of rotating and nonrotating uniform
4

cantilever beams are shown in figure ~. From the figure the mode shapes,
particularly those for the first and second modes, may be seen to change #
appreciably with rotational speed.

A similar comparison can be made for cantilever beaanswith linear
mass and stiffness distributions on the basis of the results shown in
figure 28. The mode shapes vary in about the same manner with rotational
speed for this type of beam as for the uniform beam.

If the mode coefficients for O- and 10-percent offsets in table VI
are compared, the effect of offset on mode shape is again seen to be very
small for both beams.

Beems with a mass at tip.- Bending mode shapes for a rotating and a
nonrotating uniform hinged besm with a mass at the tip equal to the beam
mass are shown in figure 29. The differences in mode shape are very
small for all three modes. This similarity apparently accounts for the
excellent accuracy of the Rayleigh approach for this configuration.

Similar results for a uniform cantilever beam with a mass at the tip
equal to the beam mass are presented in figure 30. For this case, results
are given for three values of the rotational-speed parameter, namely,
Q— = 0, 10.43, and 14.76, and also for the nonrotating uniform beam

%1
–A

without tip IIWSS. I&m this figure the rotating-beam mode shapes may be
seen to be only slightly different from each other but considerably dif-
ferent from the nonrotating shape, particularly for the first and second
modes, and vastly different frm the mode shape of the beam without a
tip mass.

Mode coefficients for rotating uniform hinged and cantilever beauiB
with a mass at the tip are listed in tables V and VI. Mode shapes for
nonrotating uniform beams with a mass at the tip have not been tabulated
but can be calculated by means of equations (14) and (17) for any value
of tip mass.

A Rayleigh energy
nonrotathg beam as an

CONCLUDING REMARKS

approach, which utilizes the mode shape of the
approximation for the mode shape of the rotating

beam in the determination of the bending frequencies of the rotating
beam, has been evaluated. The evaluation led to the conclusion that
this approach yields reasonably accurate bending frequencies for rotating ~
hinged and cantilever beams with arbitrary stiffness and mass distribu-
tions, Including concentrated masses, at least within the limits of the

@
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rotational speeds currently encountered by helicopter blades. The evalu-
ation also showed that the Southwell coefficients vary appreciably with
besm mass distribution and, to a less extent, with bean stiffness distri-
bution. A modified form of the zero-offset Southwell coefficient, which
involves the nonrotating-beam frequencies, was found to be insensitive to
chsmges in beam mass distribution.

By using the Rayleigh approach as a basis, several groups of charts
and associated procedures have been presented, which permit the rapid
estimation of the first three bending frequencies for a vsxiety of
rotating and nonrotating hinged and cantilever besms. Since the charts
are not applicable to all beams, practice may dictate the need for addi-
tional charts which my be set up by using the methods described. The
charts and associated procedures presented in this report are summarized
below, the most easily applied being listed first:

(a) Charts are presented which permit the rapid estimation of bending
frequencies of rotating and nonrotating beams with mass and stiffness dis-
tributions, each of which can be approximated by a linear relation. In
exsmple applications, this procedure has been shown to give good results
for the bending frequencies of several actual helicopter blades with mass
and stiffness distributions appreciably different from linear.

(b) Charts are presented for rapidly estimating the effects of tip
mass on the rotating and nonrotating bending frequencies of uuiform beams.

(c) A chart is presented which permits the rapid estimation of the
effects of offset on the pendulm frequency of hinged beams with any stiff-
ness distribution, an approximately linear mass distribution, and a con-
centrated tip mass.

(d) A simplified procedure is presented for estimating the first
bending mode and frequency of a rotating or nonrotating hinged besm with
a tip mass from a knowledge of the first mode shape of the nonrotating
besm without a tip mass.

(e) Charts for a modified Southwell coefficient, which appears to be
insensitive to changes in beam mass distribution, are presented; these
charts permit the rapid estimation of the first three bending frequencies
of rotating beams with approximately linear stiffness distributions frm
a lnmwledge of the bending frequencies of the nonrotating beam.

(f) Bending frequencies for beams with unusual mss and stiffness
distributions which cannot be estimated by using the charts can be deter-
mined directly from the Rayleigh energy equation by first calculating the
bending frequencies and associated mode shapes of the nonrotating besms.
This approach can be expected to yield results which are in error by less
(usually much less) than 3 percent, except for the first cantilever fre-
quency which may be in error by as much as 5 percent but w~ch ~ e~ilY ___
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be corrected to give a much more accurate result. The method has the
advantage over other simplified approaches of improved accuracy and
wider applicability and over more exact approaches of simplicity and
flexibility.

A more accurate mode-expansion method for determining the bending
frequencies and modes of a rotating or a nonrotating beam has been devel-
oped and has been used to evaluate the Rayleigh approach. In order to
facilitate the further application of this method to the accurate deter-
mination of modes and frequencies of rotating and nonrotating besms with
combinations of linear mass and stiffness distribution and concentrated
tip mass different from those considered herein, certain integrals which
have been evaluated are presented in tabular form.

In conjunction with obtaining the frequency results which comprise
the greater part of this report, bending mode shapes were determined for
a wide veriety of hinged and cantilever beams. These results show the
effect of rotational speed, mass and stiffness distributions, offset,
root fixity, snd other parameters on bending mode shape; they have been
tabulated in normalized form together with their first and second deriva-
tives or as mode coefficients which, in conjunction with tabulated modes
and derivatives of uniform beams, permit the rapid determination of the
mode shape and higher derivatives as well. The tabulated results should
prove useful in other analyses, for exemple, in the simplified approach
presented in an appendix.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Vs., February 24, 1955.
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APPENDIX A

SOLUl~N OF D~ IAL EQUATION FOR ROTAT~G BEAM

BY EXPANSION IN

uNrFoM

Solution

TERMS OF NORMAL MODES OF

NONROTATING BEAM

by Galerkin Method

.

The equation of motion which defines the bending vibrations perpen-
dicular to the plaue of rotation of a rotating besm with a concentrated
mass at its tip can be written as

~2

()

d%n
—EI— = ~n2Yn+%Wn2yn(L)b(x-L) -I-

()

~T%
i&-2 &2 dx

where

5(x-L) = O (x ~ L)

5(x-L) =; (x = L)

r .L
T=~21/ (q + e)mdq +%(L+ e)l

(Al)

L“X

nondimensional form,

)d%n ‘.—= bn%yn + rbn28(Z-l)yn(l)
=2
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where
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5(%1) = o (x + 1)

5(%1) = 1 (s = 1)

Each normal mode of the rotating beam can be expanded in terms of
the modes of a uniform nonrotating beam with the sane end restraints
as follows: .

yn = Z ‘n~q
q=o

(A3)‘- ‘

where the quantities @q sre the normalized bending mode shapes of a

stationsry uniform bean, snd the coeffi.cients
%

sre undetermined.

Substituting this expansion into equation (A2) gives

(A4)
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One way of determining the coefficients
%

from this equation

& is the (%lerkin procedure which consists in multiplying the equation
by ~ and integrating over the length of the besm. Thus,

(A5)

.

“<

Integrating the first term in
last term by parts once and making
gives for either a cantilever or a

equation (A5) by
use of the known
hinged besm:

PSAS twice am.d the .
boundsz-yconditions

%?dp( iz An&@) ‘+ (g,)’J— al
2

1 lp’f~ 5 ~#q’ d?= o (A6)
q=o o q=,

where the primes designate differentialtons with respect to Z. Inter-
changing the order of integration and summation yieiis: .—

cE -
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.

Equation (A7) can be rewritten as.

r

in terms of a new set of constants: nmnely,

J
1

~w = Egp’’#q” &
o

RW = I#p(l)dq(l)

These coefficients are symmetric; that is,

For practical purposes, the expansion
number of nonrotating uniform-beam modes.
goes from q= O to m and equation (A8)
the form

where

B~=Iw-

so that the coefficients

-1

(A9)

,

Im = Ipq, and so forth.

must be
In this
@elds

limited to a finite
case the summation
m + 1 equations of

Bqp are also symmetric.

(no)
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.

“4

*

-.

The modes and frequencies of the system represented by this group
of equations can be obtained for any value of the rotational-speed psmm-
eter Q/w1 W eq~tfw

of the mode coefficients

%0

%0

B=

.

.

.

%0

the following determinant of the multipliers

~ to zero:

%lB02”==%m

% %2”””q

Ba B= ...%

. . . . . . . I=o

. . ..*. t

.

%ul

. . . . .

%2”” *%UI

(All)

BW

This determinantal eqyation can be solved by trial and error, with
any method of evaluating determinantts, such as Crout’s, to obtain the
frequency coefficients bn and subsequently the associated mode coef-

ficients An for a rotating beam. The resonant frequencies for 1P,
q

2p, or np resonant conditions can also be obtained directly from the
determinant. For smal.1.valuesof Q/~l less than about 0.8, solutions

can also be obtained by the matrix-iteration procedure; for larger values,
however, convergence is poor, and undesired negative values of the fre-
quency squared (imaginary frequencies) may be encountered before the
desired positive values are obtained. In the present investigation
the frequency determinants (eq. (All)) were solved by tri~-and-error
methods-with-automatic

For the case of a

is not needed aud SW

beam is uniform, Iqp

thus for this case the

computing machines of the punchcard type.

beexuwithout a tip mass, r = 0, and thus Rm

is simplified slight3y. H, in addition, the

and ~ are zero by orthogonality for q # p;

unknown frequency coefficients b= occur only

on the principal diagonal. If the determinantal equation is divided

bY (~/WR1)2s then for this case the rotational-speed parsmeter also

appears only in the terms on the principal disgonal.
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.
.

Evaluation of the Integrals Iw, ~, ~, and SW

u
The integrals Iw, Mw, Rw, * SW may be evaluated numericsXly

by a method such as that given in reference 15, or, if the mass and stiff-
ness distributions of the besms axe defined by analytical expressions,
they can sometimes be evaluated in closed form. (See ref. 1, pp. 333-3%,
for instance.) In some cases Wtegrals already evaluated and tabulated
in reference 18 can be employed; these results, converted to the coor-
dinate system sad tip deflection of the present paper, were employed where-
ever possible in the presmt study. In this report all integrals for
the uniform rotating besrnswith and without a tip mass were evaluatedby
exact methods. Some were also evaluated by numerical methods in order
to determine howmsmy statiops were required to obtain good accuracy. ~
this procedure about 25 stations were found to be required for some of
the integrals involving the fourth and fifth modes.

For the nonuniform rotating beams, lQ~ ~~ ~ RW were evalu-

ated both exactly and numerically, but S* was evaluated only numeri-

cally because of the effort involved in evaluating this integral exactly.
All the integrations performed in this report sre based on mode shapes
normalized to unity at the tip. Where numerical integrations were made,
the mode shapes.and derivatives were obtained from reference 20, but the
results were modified to correspond to shapes with a unit positive tip
deflection.

The remainder of this appendix is devoted to the presentation of
results (in both numerical and andyticti form) for I~J Mm) %J

and SW which were obtained in connection with the present study but

which sre also applicable to cases not treated in this report.

Numerical results for besms with linear mass snd stiffness distri-
butions with or without tip mass and offset.- If only linesr variations
in beam mass smd stiffness m?e considered and if they we expressed as

m= q(l - H)
\

J

(w)

EI = G(1 - C%)

.$

a

then the various integrals can be evaluated expeditiously by splitting
them up as indicated in the following equations:
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Spq = spc& -
( )

kspqk+ ~ sp~ - ‘pqke + r(l+ =)Spqt

% = %Po - CIQC > (U3)

*=%.-%%

Rq=r
)

(A14)
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All these integrals are obviously symmetric in p and q. Numerical.
values for them me given in table 11 for values of p and q from
O to 7 for hinged bemns and 1 to 5 for cantilever besms. As may be seen
from equations (A13), these remits permit the rapid calculation of the
terms of a frequency determinant for a rotating beam with any combina-
tion of the following parameters: (a) linear mass distribution,
(b) line= stiffness distribution, (c) any offset (including large
values), and (d) any tip mass. In addition, the results csn be used
in conjunction with values of additional integrals to set up shdlar
determinants for beams with higher order mass and stiffness distribu-
tions and beams with concentrated masses at other locations.

Integrals for uniform besms with tip mass.- In order to facilitate
the extension of the results for the uniform rotating besms to higher
modes, the exact expressions for integrals pertinent to such cases are
included herein.

The integrals for the cases where P = q can also be used to
determine values for Southwell coefficients for modes higher thau the
third. The integrala were evaluated by the method of reference 1 or
tsken from reference 18 and transformed into the notation of this report.
The expressions are given in terms of the parsmleters c%, ~s, ad Ysj

values of the first two can be obtained from reference 20 for values
of s from lto5. Fors>5, as= 1 for all practical purposes u

and ~s can be obtained from the appropriate frequency equation for the

nonrotating uniform besm. The square of ps is the frequency coeffi- V

cient for the nomotating besm as for the sth bending mode of a uniform

beam. Values of ys are not required for the cantilever beams; for
hinged beams, 7s = 1 for s S 3; the values for s~ 3 sre given in
the following table:
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Tension integrals Sw for cantilever beams:

4
If p+q,

[

E@k?-klpp+yq~-%q -

1

+

‘“=~::q[a
r(l + 5)

Pq4 - & {[ 1[ 1}~cf’pBpI@-+(-@%p2%2 - ~B~ %4 + (-I}w%p%qa

If p=q,

‘qq=aq,q&-;)+~+,[%,q(* +;)+:]+
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Tension integrals SW for hinged be-:

.

P+q+o,

4$q%p4

[ ‘()‘“=--- f(--(-’)wq~”f% +

If p+q, butp= c),

sqo = =(-l)q ~ + r(l + g)

Pq@

If p=q= c),

Soo = ~+= ‘+r(l+g)
32
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Stiffness integrals %
for cantilever or hinged besms:

If q+pj

~=o

If p= q+o,

If p=q=O,

1(-J*=O

Mass integrals ~ for cantilever or hinged besms:

Ifp+q,

Mqp=o

If p= q+o,

If p=q=o,

%0;=-

Tip-mass integrels for csntilever or hinged besms:

If p= q,or p+q,

‘qP=r
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APPmIx B

AN APPROXIMATE MDI’HODOF 0B2AINlZ!lGFIRST BENDING MODE OF

HINGED BEAM WITH TIF

The vibration modes of a

MASS FROM FIRST BENDING MODE OF

WITHOUI TIP MASS

rotating hinged besm must satisfy the
following eqpation, which expresses the condition of zero moment at the
root:

or, in

o- Jo

form,

U#-mxydx.Q2/ (x+e)mydx=O

dimensionless

(Bl)

(B2)

#

?

4

For any given beam the mode shapes of the nonrotating beam can
readily be shown to satisfy this criterion exactly if e is zero and
very closely if e is small; therefore, the nonrotating-beem mode shapes
are good approximateions to the rotating-besm mode shapes, regardless of
the mass distribution of the beam. However, the nonrotating-besm mode
shape must be that of the beem with the ssne mass distribution; the pur-
pose of the present derivation is to go a step further and to obtain an
approximate ftist mode shape for a nonrotating besm with tip mass in
terms of the first mode of the ssme beam without tip mass. ~ view of
the preceding srguuent, the mode shape obtained in this manner should
serve as a good approximation to the first mode of the rotating or
nonrotating beam with the sane tip mass end when used in conjunction
with the Rayliegh approach (eq. (1)) should yield a good approximation
for the first bending frequency of a rotating or nonrotating hinged besm.

In deriving such a relation the assumption is made that the second
derivative or curvature of the beam remains unchanged in the two configu-
rations. Thus, the mode shape for the beam with tip mass is assumed to
be of the form

.

(B3)
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where the first mode of the rotating

assumed to be approximately equal
shape Y1. With this mode shape,

OJ%32 1
To IYE(Y1 -I- D@dX -

If, now, the mass distribution is

to

39

beam without tip mass yl is

the nonrotating-besm first mode
the criterion of

considered to be

equation (B2) becomes

+- D@)d% = O (B4)

made up of the con-
t~uous -distributed mass of the besm md plus a concentrated tip mass,

equation (B4) can be written as

( )J%2 1-- 2

To
%X(Y1 + @)& +

()[ 1~rYl(l)+~ -

J
1

%(S -t q(Y~ + @)&z -
0 ‘(l+=)[Y1(l)‘4=0 ‘B5)

Inasmuch as Y1 end 3 (the pendulum mode shape) sre mode shapes of

the hinged bean with mass distribution md, they must satisfy the

orthogonality condition for normal modes for such a beam, nsmely,

J’

1
~H~&=o

o

and, hence, eqyation (B5) becomes

—
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When this eqpation is solved for ~, the result is

If the offset 5 is zero, equation (B7) tslsesthe much simpler form

J
1.

ii@’dX + r
o

(B8)

or, with Y1 normalized to unity at the tip,

.

Do -1

J
1

~-’dxmx
o

1+
r

By compsAng the relative values of the terms of equation
considering the overall influence of terms containing 5,

(B9)

.

(B7) and by
small offsets

can be shown to have a negligible influence on the value of ~ for

values of the rotational-speed parsmeter encountered in helicopters.
Also, for nonrotating besms, E does not enter the problem and, hence,
can be set equal to zero; thus, as mentioned before, the mode shape,
based on the-result of
should serve as a good
beams with and without

Upon stistituthg

tion (B3), the desired
tip is obtained as

e~uation (B9), obtained in the following p-~~aphs)
approximation for both rotating and nonrotating
offset.

the value of ~ in equation (B9) into equa-

first mode shape of the beam with a mass at the

Y1* =
1

1+
f

1
Ed5#d5?

cl

r
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()and the slope yl* ‘
()

and curvature yl* ‘* of this mode shape are then

given by

()*:=xl
1

1+
f

1
iii&.ii

o
—

r

()Y1* “ = q’

(Bll)

(B12)

(Eq. (B12), of course, expresses nothing more than the asmnned equality
of the second derivatives.) If the mode shape of a beam with a psxticular
mass and stiffness distribution (but without tip ma@) is known, expres-
sions (BIO) to (B12) thus permit the determination of an approximate mode
shape for the same beam with @ concentrated mass at the tip and can be
used to evaluate the integrak! of the basic Rayleigh equation (eq. (1))
by numerical methods; reasonably accurate values can easily be obtained
in this manner for ml and for ~ and Kl=, from which the bending

1
frequency at any rotational speed can be determined dtiectly.

Beams With Linear Mass Distribution Plus Tip Mass

For the particular case of besms with a ld.nesxmass distribution plus
atipmass, ~=l-kX and

J
1

J
1 1

i5&dz = p5?dX-k ‘ti
o 0 0

mnls

(B13)



42 NACATN 3459

This result can be used in conjunction with the first mode shape given
for hinged beams with linesx mass and stiffness distributions in table IV
to obtain mode and frequency results for such beams.

Beams With Uniform Mass Distribution Plus Tip Mass

For the case of beams with a uniform mass distribution plus a tip
maSS, fi=l and thus

%
-1=—

1
(B14)

1+;

Uniform Beam With Tip

For the case of a uniform beam with an

Mass

arbitrary tip mass,

%=1
.

.

Thus, ‘o is the ssme as for the preceding

the integrals of the Rayleigh equation (eq.

In this special case

which permit the deter-
evaluated exactly by

case.

(1)),
mimation of ~ and K sndthusof ~,canbe

the methods of reference 1

J

1

0

or 18. The results are

‘( )m yl* 2&=A+z
4 3r-1-l

(B15a)

(B15b) %
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(+2(*++
++’&f’-g)+

2

( )()/

1 1
~+r

1+~
3r

(B15c)

(B15d)

where PI. 3.9266, from the results given i.nreference 20. ~ the

preceding integrations ~ (ref. ~) has been tslcenequal to Unityj

this assumption intrduces a small error of less than 0.1 percent.

Equations (B15) sre based on Y1 rather than yl* normalized to

unity at the tip. TO obtain equivalent formulas for yl* normalized ~

()

unity at the tip, these results must be divided by the factor — .2
3r+l

Nonrotating- and rotating-beam frequencies obtained by this method
for the uniform beam are compared with nmre accurate results in the sec-
tion of this paper entitled “Chsrts for Bending-lYequency Determination.”
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EXACT

m

&

TRUE

FAIRED

L

L

L

IA15LL 1

AND ESTIMATED FREQUENCIES FOR SEVERAL
MANUFACTURED BLADES

EI

CLJNR, RADIANS/SEC ~R, RADIANS6EC
MODE

EXACT IESTIMATED EXACT IEsTIMATED

I St I 7.3 I 7.4 49.2 47.7
:;: 48.5 50.0 86.8 85.7

95.5 101.0 I 37.0 I 37.0

I St 21.6 21.1 50.6 49.2
2nd 58.9 60.5 92.4 92.2

3rd 112.1 I 22.0 148.0 I 54.0

-1=
0’!

L -
I St 21.9 21.1 74.0 78.3
Znd 63.7 59.5 I 32.0 I 34.4

3rd 126.0 125.5 200.0 207.5

L
. I St I 3.4 14.6 37.9 37.8 g

2nd 43.7 41.6 71.0 70.3
3rd 94.9 94.5 125.0

9
124.0 ~

ROOT TIP ROOT TIP ‘3WI
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mBLE II

VAL~ l!ORml!WRKW lXTHEMODE-EXPANSIONMH’EODOFAPPENDIXA

P q BP% %% ‘P% ‘P% %% h ~’% %k %%

E@ed beamstithMneermasssndstiffnessdistributions

o 1/3 1/2 1/4 o 0 1/3 1/4 r
1 0 4. lbli’ -0.w 8 ;

J
o 0 0.0%7’7 r

, 2 0 .Og~2 -.00 5 1 0
-.06926

: 0
-.00320 1

.cQ165 r

: :
0 0 0 .c0321 r

.05296 -.cKm24 1 0 0 0
y o -.04287

.00025 r
-.CQ075 1 0 0 0 .00077 r

1 1.59938 2.30532 1.26Q52 6.80791 %. 4X15 25.639381/4 :;;?; r
2 d@:; -1.22263 -.18X22 3.59935 0 30.97991 0

L ~ -.09117 3.7@25 o -4.62284 0
-.0s37 -:=

.00288 :
-.022603.85859 0 7.m92 o

5
.(X)531 r

-.o1293 .X2567 -.o1258 3.88g21 o -3.32571 0 .oCm82 r

2 4.47610 6.622253.4301517.79273 624*12075;g.604~9 1/4 .U?g9g r
,3 -::g:; -3.43733-.@Z% 6.u170 o 0
-4

.05202 r
.2Eh31 -.370936.53-5 0 -151gg5ig o

5 -.1.44’53-.52531
.IX)182r

-.129846.73955 0 48.63946 0 .03382 r

3 8.gY3&-13.406076.-1 33.7V70 2716.9000013g.g54 y m12~ r
34 -~:g~8 -6:gX?&-1.6094 8.57761 0

L
r

5 -. 443 9.1.2E!63 o -30:$181 0 .00130 r

*4 15.ti83622.65%301.1.445g3*.5@cl 7945.030039$=6~4 1/4 .x%52 r
5 -5.27717-1o.91n7 -2.~35 1o.98707 0 . 0 .owl r

j 5 22.g818634.3792017.25665Eb.y@Lo18500.20259629.3965 0 .12’p.or

CEmtilever besms with ~ mass end.stiffness distributions

1 0::;a~ o;3998 0:;39~8~ 161~ :.0956 0.59703l/40.2oti3 r
2 2.97335 0 .03858 r

L3 -.19809 -.26e02-.13341
.*

:9638 0 -1.102490
4

.w508 r
.=828 .09267l.@@A o .9%62 o .00220 r

5 -.11552 -.1958 -.07yX 1.147g9 o -.67480 0 .000g4 r

2 ::61:;5 ::= 1.319058.MJ433 UZL.37958 g.yk 1{4 ;W& r
~ 3 .x2583 5.5WII o
4 3P

r

-:;7W3’7-.910E5 -.53287 3.39561 0 .I.3:793 0 .00514 r

5 .76571 .*97 5.70988 0 18.98574 0 .ci1430r

3 4.46488 6.23E!033.5005019.32474 951.63772y7.y!3y 1/4 .13308 r
54 -.293288.91208 0 .04928 r
5 lgz: :::%; -1.la57 5.04050 0 -4.0:74657: .m317 r

$4 9.0138712.864&l6.9497435.725543654.3173l&6.%l;3 1~4 .m r
5 -2.14253-4.75477-1.0526412.17992 0 . .05007 r

j5 15.2003221.g4610=.6399557.033499985.9627Wo. 7227 1/4 .Am r
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TABLE T=

MODE RE9TJLTSFORNONROTATll?GCM!l?lXEW!lREEIMS

MASSMIDSTIFFNESSDISTKIXUIXONS

KmFI LINEAR

Y2 = Y2’ = Y2° =

‘1’ = ~: = d2 $2’3tation 2“ $1’ @z” 2’ 3 = # E

m = q; EI . E~ (exactsolution, ref. 20)

o

1

2

3

4

5

6

7

,8

9

10

0

1

2

3

4

5

6

7

8

9

10

0 0 3.51630

.0168 .32743.0332-.09

.0639 .60’652.5’5Q8-.30U

.1365 .83782.0775-.5261

.2.2991.0226L 6=4 -.683z

.3395I.1631

.46111.2627

.59591.3266

.72551.3612

.%24 1.3745

1.00001.3765

1.1938-.i’lyi

.E083-.5W

.4799-.3171

.2246 .07(X

.0590 .52%

o l.oocc

)
0.1695

.0169
.4723

.0642
.7271

.1%
●9347

.234
1.0968

.3400
1.2162

.4617
1.2970

.5914
1.3451

.7259
1.3676

.8626
1.3736

i.mo

o -22.03450 0 61.6972

-L 6776 -U..* .2281.3.7655 m.oga

-2. 32A.o-I.5k32 .6045 3.u81 24.%27

-2.0351 6.9860 .7$2 -.3551-4.0.5613

-1.o1.14U2.9888 .5259.4.Om 29.2XK

.4531 15.7253 .0197 -5.5520 1.21.45

2.0194 15.0599-.4738-3.‘pU! 32JM31

3.3709 IL5931 -.6574 .3558 46.6579

4.2876 6;6336-.3949 4.7354 37.2963

4.7095 2.041J..22@ 7.3385 14.0713

4.7ED8 o 1.0000 7.8$87 0

3,5104

3.02&

2.5482

2.0760

L. 62Q7

1.1937

.ttlq’

.4&6

.2253

.0595

)

3

-.0925

-.5038

-.5257

-.6830

-.7131

-*5@3

-.3ti6

.0704

.5239

L.0000

-22.0247
Q.9031

-lL5367
.2.o&9

-1.*
-2.2495

6.981a
L 5725

12.9814
-.3015

15.7169
1.2418

15.0516
2.7236

u. 5857
3.8698

6.6278
4.5356

2.0377
4.7607

0

)

.2261

.6024

●7553

.5262

.Olw

..4753

..6604

..3978

.2270

L0000

61.73ti
2.2608

14.26&
3.7628

-24.1735
I.5296

-40.3003
-2.2914

-29.3314
-5.0647 -

1.0704
-4.95U3

%.4148
-1.&w2

46.7572
2.6262

37*3956
6.2482

14.0565
7.7299

0

.

.
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TAELE III.- Conthzed

MODERESULTSFURNMWMTING cMwrMwRBEMsm ImEAR

MASSANDSTJ3?RWSSDETKPWI?ZOIE

Station Y1 Y~’ Yl” Y2 Y2n Y3 Y3‘
[

Y3°

o

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

?’

8

9

10

)

.0151

.05&

.1263

.!ZL59

.3234

.44y

.5769

.7X54

.8572

..woo

3.0&12
0.1508

2.&44
I .43X2

2.4%2
.6tb7

2.1551
.8962

1.7glo
‘1.om

1.4102
1.2163

1.0259
1.3183

.65E0
1.3847

.3350
1.4182

.0$%7
1.4278

I o

0

- .One

-.263.2

-.4723

..6361

-.6907

-.>Tl

-.3470

.0335

1.0000

-0.7779

.1.8336

.2.m

.1.638S

-.5456

.9362

2.3002

3.8252

4.6675

4.~8

IT
t 2.976

0.X247
2.42Ql

“0w5 .3667
.0491 2.2996

.5966
.loaa 2.1512

.1900

.2$08

.4093

.+26

.6879

.C!417

..0000

-17.98250 49.0088
1.8715

-1o.59!55.1~1 14.~58
3.374’6

-2.7533.5246 -16.827z
1.&)48

4.8322.7053 -34.9664
-1.5083

n.E52 .5543 -31.logo
-4.4456

15.o@4 .log -6.4431
-5.0240

15.9GZ-*3%7 26.1.221
-2.505a

13.4617-.6432 47.5240
2.0377

8.4741-.4394 43.8272
6.2401

2.8758 .1846 18.6063
8.1542

0 l.oc#o o

~.8U7
I 1.9705
1.0088

1.7531
il. 184i

1.4955
1.3337

1.1943
L4531

.8469
1.5378

.4513
1.5&9

o
1 i

)

-.0518

-.ML8

-.34-CL

-.4989

..5%3

-.3622

-.3908

-.0570

.4244

L.OCOO

O. 5~78

1. ml

I. 6530

1.5179

-.8741

.24E

1.7133

3.3378

4.&L42

5.7561

.U.4951

-7.mo

-3.5774

1.3316

6.4682

u. 2476

w %333

16.4929

15.08?7

9.7945

0

3 26.&’T2g
1.0789

.lo’j’g u.4265
2.2098

.3289 -5.0368
1.72W!

.W8 -18.7863
-.0799

.4938 -24.1585
-2.3871

.2551 -16.5097
-3.9249

-.1374 4.6998
-3.3940

-.4768 33.2025
-.1303

-.WB 54.9056
5.W35

.0240 49.9675
9.7602

Mmol-” 10
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TABU III.- Conkbmed

MODE RESULTS FOR NOMKXMTD?G CANT~ HMMS Wl!H ~

MAss AND S!KO?mms msrJ!Rmn?Iom

ltation Y~ Y~ ‘ Yl” Y2 Y2 ‘ Y2° Y3 Y3‘ Y3°

o

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

1

0.1733
.0173

.4812
.06*

.7375
.13$12

.9437
.2336

l.lom
.3438

1.2164
.46*

L 2922
.5946

1.3362
.7283

1.3562
.e639

1.3613
..0000

3.5963

3.0782

2.563~

2.0614

~.5a35

1.1442

.75ED

.4391

.1999

.Om

o

0

-.o@y

-m
-.470h

-.596t

-.6018

-.4665

-.2022

.1574

.5701

l.ooca

-o.@6

-1.8857

-1.9658

-1.2637

-.opl

1.3533

2.6423

3.5963

4.1269

4.2990

-20.5149

-10.2793

-.@l

7.2497

12.4090

14.2921

v.0765

9.6ti1

5.2X3

1.398

0

3.168a
0.1546

.0155 2.8585
.4404

.0595 2.5ti8
.69ZL

.1287 2.146-f
.968

.2194 1.7557
1.0823

.3276 1.3563
1.2183

.4493 .9647
1.3144

.5ED8 .6034
L3T48

.7183 .2979
1.4046

.8587 .0836
1.4129

,.CQOO o
r 1

0

-.0722

-.2395

-.4259

-.*7

-.5889

-.4&2

-.2337

.1244

.5502

I.ocoo

-0.7222

-1.6728

-1.%38

-1.34&

-.282).

1.0%6

2.4651

3.5808

4.2586

4.4978

-ti. &l

-9*5343

-1.8680

5.2897

1o.867’9

u.9363

14.0175

11.3083

6.7@7

2.1918

0

0
2.0307

.2031
3.1960

.5227

.6145
.9179

-2.5205
.3624

-4.6174
-.0993

-3=%63
-.4960

-.88&
-.5&8

2.9901
-.2857

5.8749
.3018

6.9825
1.oCwl

)
3

.16$5

.4581

.5&7

.4004

-.OI.62

-.4330

-.5851

-.3333

-.2605

1.0000

1.6%1

2.8373

1.2361

1.8134

4.1661

4.1669

1.5214

2.5189

5.9375

7*3951

$.8179

1o.7772

.24.7575

“36.5657

.22.1*

6.8u25

32.2249

40.3627

29.Z5U

1o.3404

0

45.X241

U.7757

-17.m~

-32.3=

-24.9765

..2658

27.5563

42.W23

35.4166

13.9636

l.ocOo

.
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.

MAss AND sTIxFNEss DISTRJBUCIONS

r
ltation Y1 Y1’ Yl” Y2

I
r~’ r~” Y3 Y3 ‘ Y3°

m=d’-=h=w(l -=)

o

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

0
0.12E21

.0128
.3764

.0505
.6098

.IQj
.8255

.1940
1.Oaxl

.2960
1.1839

.4150
L33~8

.5482
1.ti23

.6924
1.5184

.8443
1.5575

1.OCQO

D

.01$)4

.0722

.1515

.2506

.363’6

.4853

.6u0

.7W

.8704

1.Oooo

D.1939

.52&

.7929

.99KL

1.3294

1.21m

L 2665

1.2887

2.5$@

2.4797

2.333E

2.1566

1.9455

1.6$v4

1.4185

1.lo4e

.7609

.~lll

o

0

-.0491

-.1706

-.3226

-.451.I

-.5145

-.4692

-.2E!@7

.0339

.4796

l.m

-0.4913

-1.@k

-1.WOz

-1.3046

-.6320

.45Q5

1.0230

3.2265

4.4X2

5.2043

-IJAoou

-7.2927

-2.8931

1.9575

6.7820

10.9396

13.7170

14.4325

=.5408

7.7223

0

m=~(l. X); EI=EIO

4.0558

3.3450

2.6451

1.9813

1. 3@8

. 8ED3

.4904

.2218

.Om)

o

-.0607

-.1842

-.2508

-.3237

-.2570

-.0946

.1394

.4144

o
1.00%

.Imo
1.98X

.2992
1.3592

.4352
-1.4506

.3%11
-2.7329

.u98
-3.5647

-.2167
-2.6041

-.4771
.6350

-.4135
5.2U2

.low
8.923k

l.oCKXl

125.2707

-15.21620
0.6%9 1.1740

-6.2023 .1174
1.2%8 1.4916

1.8823 .2666
1.0659 -.2901

7.6453 .2375
-.3292 -2.3229

IQ.E83 .0253
.6672 -2.3870

9.7358--21-35
1.6238 -.ea34

7.2U0 -.3018
2.3397 1.3851

4.0543-.1.633
2.7503 3.2238

1.5122 .1591
2.9Q 4.1o81

.22& .5699
2.9437 4.Xno

o 1.0000

9.7964

-6. 57x)

-~8. @k2

-in.5881

-EL.5213

9.3586

33.1815

47.59s5

39.7770

0

35.541.0

2.2191

.s.6272

.19.‘7496

-2.7888

15.g4Eo

23.7445

18.8323

8.5833

1.4574

0
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“

!CAELE III.- Concluded

MODERESULTSFORNONMTATIXGCANTILEVERBMW WITEIJMEAR

MAW ANDSTIFI!KMSDHZKWlION2

tation Y~ I Y~ ‘ Yl” Y2 Y2 ‘ Y2°

m.mJl-
(

Z); EhE~l-:

0 0 3.62280 -12.66400 28.6145
0.1752 -o.5212 O.gwo

1 .0175 3.15Q5-.0521
.@03

-5.9369 .0990 3.6038
-1.u48

.0666 2.6X -.I.636
1.39/?6

2 .&58 .23@3 -15.6241
●7539 .1.0442 -.0314

3 .141g 2.@61 -.titi 6.Yw5 .2357
●9635

-18.W8
-.4288 -1.7917

4 .2383 1.5602-.3109 .~9 995678 .0566 -6.o124
1.UJ5 -2.3466

5 .3502 1.0620-.2604 10.0140-.1781 12.49eo
1.2257

6
1.4867

.47’28 .6358..lJ18
-1.u398

8.u3M -.2941 23.4526
1.2@3 2.2874 1.0759

7 .6017 .3106 .U-1o 4.9W4 -.1%5 21.2750
1.3203 2.7@ 3.*

8 .7338 .1034 .3955 2.0367 .127’o l.o.C!683
1.3307 2.9w7 4.2A5

9 .8668 .Om .6955 .3379 ●5504 2.0489
1.3318 3.0448 4.4958

10 1.0000 0 1.0000 0 1.0000 0

m=~(l- %); EI= EIJl -z)

o 0 3.07500 -8.99630 18.1439
O.lm 4.3854 0.6710

1 .0151 2.eegg-.0385 -4.9931.0671 4.1930
.4337 -.8W 1.0985

2 .0584 2.5321-.1266 -.4387.1769 -8.Em6
.68S9 -.9247 .2793

3 .X271 2.1832-.219 4.028).2049 -14.X%6
.9052 -.5297

4 .2176 -.=8 7“5634 ●0$9
-1.0798

1.7937-.2720 -$249
1.0846 -1.9343

5 .3261 1.3813-.2507 9.4334-.0965 4.3850
1.2227 1.1393 -1.4924

6 .4484 .9705-.1368 9.2835-.2458 18.4222
1.3198 2.0523 .2S5

‘r .5833 .5903.0684 7.3013-.2175 24.~B
1.3788 2.7735 2.6ti

8 .n& ~ ~1 ●2735 .%58 4.2407.0451 18.9564
3.@37 4.41ca

9 ●QB “ .0547.6657 1.3128.4861 6.6771
1.4114 3.3434 5.U89

10 l.om I.0000l.ocmo o 1.0000 0

.
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.

!cA2mIv

Km21mrJLmmR mmm.ATmG maEom#lmkTI!EImEAR Mma AKom!IFm2s MmmBursorm

Station Y1 m$fl Y1’ E#l’ Yl” 6$1” Y2- $2 Y2’m#2’ Y2” =42” Y3= $3 Y>’ =fi3’ Y3=M$$”

o

1

2

3

k

5

6

7

8

9

10

II

12

L3

3.4

u

Q

1

2

3

4

5

6

7

8

9

la

11

12

u

14

15

0

-J@n

-.6623

-.3973

.Z27k

l.cmocl

o

. M78

-.>28

-.W

-.5fx9

-.ag4

-.f%21

-.6233

-.5339

-.3973

-.-5

-.cQ@

.-

.4788

.7382

l.cw.o

-2.7c02

-1.%17

.1938

2.37%

3.6749

3.925-7

-2.6675

-2.4751

-2.IIE6

-1. ~

-.9==

-.B

.%09

1.>U

2.ok9

2.f3x9

3.1679

3.53!37

3.7?3.3

3.@@4

3.9*

o

7.9756

Uxc61

9.3033

0

.W

.=57

-.6005

L3.7134 -.*

o l.ccco

o

2.5017

3.6M33

7.948

g.wo

11.~

Il.6%S

UA610

lo.661g

9.m3

7.5279

!5.239

3.5U3

1.7444

.4821.

0

5.(X)43

.7SW

-4.’P24

-2.caO

h5033

7.06%

o

.=7

.m

.e37

.6745

.509

.2246

-.lfxa

-.3977

-.6006

-.6~

-.5567

-.=35

.08J+7

.5X9

l.axo

k.@li3

3.7708

1.%00

-.37LW

-2.W

&.lEq

-k.8692

Jd659

-3.0431

-.8832

L 5878

3.9028

5.67=

6.6950

7.0367

0

-%.m3

-IO.*

32.9576

26.%34

o

0

-16.1228

-28.5821

-34. w

-33.4X

-E&pm

-X3.9343

6. I.398

21.p25

32.*3

37.6597

35.&

25.7$97

15-.2316

M@l

o

0

-.6299

.5732

.W

-.6.376

1.C$YXI

o

-.4542

-.683.4

-.6298

-.m17

.1$1

.5W

.6758

.WP

.U06

-.3nJ.

-.6H2

-.5878

-.24m

.3365

1. Cecil

0’

65.6943

-59.5-

-m.6536

76.8702

0

-&m

-3.7078

.7-747

kg=

6..%73

5.7417

2.0541

-2.3328

-5.*

-6.6245

-4.ZM1.

.3307

5.w

aa~

9.9328

0

43.47h8

69.7e3

64.4%4

50.lk62

-37.7598

-57.7M5

-7L7578

-53.4956

-1o.@31

37.382-I

70.4947

75.lp2

52.*

M.&3
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8tat10n Y~ Y1’ Y~” Ye YE’ %!” Y5 Y~’ Y5”

m.~j~m~l-~

o 0 0 0 0 0 0
-2.40U

1 -.l&)l
b.2349

2.1968 .2EZ3
-5.7084

-12.1633
-2.*

-.38%
3.4337

32.w

2 -.3104 4.4?.28 .52X2 ..61@
-3.57M

-22.~
-J..9610 1.9332

Z.tin

3 -A&u. 6.32zL .641.3
.0350

-w.c968 -.6118
-x.Y283 .043.4

39.0998

4 -.$% 8.356 .6441
3.@la

-.W
-X.m -.3523 36.xl14

-1.9342
5 -.m

6.2x4
9.8221 .5151 -24.99= .061.2 -3.3443

-.32U -3?3W
6 ..6293 lo.7q34 .2j-p -14.2022 .km

5.9598

.3949 -4.4%4
-43.9333

7 -.6330 11.1731 -.02q .4449 .6662
3.U49

l-@3 -4.4618
-67.YW

8 -.%Q
-1.Z!.29

10.9231 -.=1 M5.M36 .5&?3 -61.E&lo
1.m

9 -.40?n. Io.om -.%
+3977 .5.1621

29.6539 .* -6.7887
2.z69

-.Z3W
-1.@2 -6..9767

10 & 5728 -.6433 yf.8479 -.m *. 4353
3.0959

-.0283
1.0303

U 6.6547 -.3747 38.6@
-5.%7

-.77* 68.7354
3.!53& 3.3665 -.%B

12 .2376 4.4883 -.3369 =.4?78 ..6285
3.w

@.5m

u .4635
5.6618 4.6~

2.3693 .ow 19.f120 -.s72 66A744
3.9981 6.962) 8.98P

14 .W .- .~k~ 6.4608 .2W
k.opl

?5.3s95
7.42%

15
lo.77u2

1.0000 0 l.(xiu) o 1.cKK9 o

m.%; EI-u(l -X)

o 0 0 0
-1.M.2

o 0 0
2.ml

1 -.12kl
-3.4482

L- .le33 -6.0403 ---
-1.7763

=.9549

-.243
2.4~ -am

2 2.641.2 .35M -u.83.08
-1..6xo L 6537

-.3984
-.750

27.3446

3 -.3492 4.0919 .4622 -1.6.A>
-I.3272 .%32

-.M+@ 33.6=

4 -.4377
1.4065

5.5538 .4997 -19.28)4 -.3352
..9372

e.%
-.p~l

5 -.915 6.96x .4526
3.*9

-.4940
-lg.162f5--- ti.6738

-1.9s66 4.=65
6 -.5344 8.23* .- .l&6121 .1449

.W9
-7.9W

-2,9867
-.5n8

3.6496
7 9.2994 .U22 -8.458) .W

.6722
8

-3.5%2
-~.5748

-.4Ko la.0650 -.W5 1.W .4934 l“m -46.9233
1.3MI

9
-3.= -1.wfi

-.3* 1o.4433 -.3402 3.4.395 .3964 -44.9&f6
2.0346 -2.4W

-.%09
-4-Z-n

10 lo.34yf -.WV W.23% do% -22.5639
2.7212 -.63x

n
.5.5508

-W95 9.6834 -.542 *o134 -.* a.~o
3.%34 l-.%95

12 .I.4wf 8.3@ -.4204 43.7041
-3.@.2

-.5- ‘w.?l@l
3.91& k.m

u .40~ 6.5673 -.1o47
1..o372

41.126?’
4.3383

-.*7 1o8.0221
7.41.40 8.0394

14 .6951 3.%45 .3X q.2670 .0822 92.32.)8
4.5730 0 9.*8 o 13.7667 0

15 1.WX l.oaw l.ocloo

.

.

*

.

●

.
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NACA TN 3459

IcAPJ.&Iv.- c!on~

ImlE Rmums m NommATma mm BEAMswm21mEm M38Ams!EwRms DmEcmmmNs

station Y1 Y1’ Yl” Y2 %2’ %!” Y3 Y3’ T5”

o

1

2

3

4

5

6

7

8

9

10

IL

u?

u

14

g.

o

1

2

3

4

5

6

i’

8

9

10

IL

K?

13

IA

15

0

-.l~8

-.m

-.4182

-.5338

-.54t!&

-.5$78

-.7W

-.4083

-.~l

-.In-p

.08%

.%37

.5=

.7647

l.cow

o

-.1405

-.2714

-.3m

-.46p

-.5X57

-.5236

-.4877

-.4074

-.2847

-.1240

.06e4

.2247

.5K8

.7TP

1.03cKl

-2.3%3

-2.IM8

-1.Teleb-

-1.2850

-.’5693

.OJ%

.7083

1.3836

l.=

2.5203

2.9332

3.2285

3.4124

3.93W

3.5298

-2.lon

-1.%32

-1.676J+

-x.*83

-.7*

-.W

.~ek

1.2)46

1.w?

2.4U0

2.28y5

3.2447

3.4EiL2

3.6044

3.643

0

2.8X6

5.4383

7.6332

9.s

lo.25$A

lo.53*

ID.1773

9.2456

7.%.53

6.w92

4.4*

2.7358

1.3192

.%38

o

-
0

.27W

.4’@5

.*74

.pe6

.3447

.IX72

..L932

-.4Z4

-.m

-.5787

-.443

-.m

.In

.~a?

0.

2.16y

4.3162

6.29Eo

7.*7O

9.ZO*

9.W2

M.oku

9.5m

8.592

T.=

5.399

3.!Z162

1.&.25

.~&?

o

0

.42EiL

.5a-

.Pu

.3642

.U93

-.m

-.369k

-.!53+7

-.5760

-.4W

---

.#

.5345

l.oxm

-

4.091.2

3.o@-f

1.3335

-.7338

-2.03

-3.ma

-4.2368

-3.3727

-2.K@

-.U44

2.038

3.*

!5.3124

6.07&

6.3271

:H-lq

3.5959

2.8%2

1.4247

-.3274

-2.0558

-3.3735

-3.*

-3.6638

-2.4829

-.*

LX46

3.6@6

5+%33

6.3407

6.6828

0

-15.4147

.ti. 8339

-2.s958

-2&73z5

-19.1453

-5. *

9.6994

E2.U95

33.k7Eo

32.5262

28.8J72

zo.@.o

11.@4

3.3416

:~)

o

-u..7l39

.=.5762

-!x.m

-2QI.02

-22.1587

-g.lfw

k.m

18.o1o5

28.3717

B.44U

32.2076

~.2411

14.m29

4.6798

0

0

-.3730

-.3537

-k-ml

-.1402

. E@

.957

.3=

.35A

-o@

-.41.69

-.6058

-.5153

-J.!m

.392J.

1.OXO

o

-m@

-.5079

-.4640

-.zo~

.I.6xl

.4700

.3746

.4234

.0681

-.3262

-.5765

-.*

-. 2)92

.3517

l.OWJ

-5.5947

-2.a)6

1.3@9

4.BP

6.0537

4.m

.Zz5

-3.k832

-5.834

-5.6463

-2.8473

1.3765

5.4594

8.1471

g.11%

-4.%68

-amu

.6587

3.9138

5.4939

4. f3J37

1. %83

-2+34

+.2%3

-5.9W

-3.7345

.J’J@+

5.0643

8.WA

9.7239

0

k3.X%8

65.7475

55.0337

17.6072

-27.5743

+8. 91.63

42.3944

-37.4169

3.9%9

k3.5972

65.274

62.9664

ko.7963

13.425.5

0

0

32.6@I.o

53.9102

50.6902

&.@lo

-L5.7m7

-k7.z162

-&IA@

-46.56X2

-9.9582

33,km7

@3.EO~

71.58%

s.-

m km

o

55



mBL2 Iv.- 00ntimw.

mti2mwm2m mmmm7m20320 mAmwmEIJx2AR MA82Amsrmlms ~NS

station Y~ Y~’ Y~” Y~ Y~’ YE” r~ r~’ Y3”

m.~l-~; 21-%(1-E)

o 0 0 0 0 0 0
-1.6543

1 -.11o3
3.4631

1.28a .3.643 -6.04.65
-3.0051

-.2203
-1.%82

14.33y3
2.0642

2
-2.06k5

-.2S!8 2.Gw .3xu
-1.3w2

-u.6724 -.3* 2fi9a!33

3
1.ax

-.W75 4.08% .38S2 -35.9m
-.3%4

-1.u78 .2431
-.3597 %W

4 -.3W
I.6735

5.4721 .404-4 -17.@g2 -.2482 @+.3z16
-.7536

5 -.4323 6.74B
-.9314

.3423 -ti.’@o
3.2227

-.0333
-.3051-

7.4502

6
-2.om

-.4%6 7.m .ap
3.6744

-M.qwk .2U6 -IM.474
.2J55 -~.m

7 -.4383
2.691

8.~3 .Olek -4.6272 .393.6 -34.233
.7932 -3.1264

8
.4730

-.385-4 9.wa -.lxl 5.3591 .4231 -42.71k3
1.3977 -2.7646 -2.2779

9 -.2924 9.@ -.~44 16.3885 Aq12
2.olal -1.6775 -4.4252

-33.8eQ8

la -.W3 8.92M -.4%2 25.6827 -o@ -6.m
2.6041 .08$6 4.’/776

M. .o153 au~ -.48% 34.U99 -.3W
3.1425

33.1451
2.3363 -2.5501

12 .f@8 6.8L94 -.3248 %.@3
3.5944 4.7346

-.= ~.wo

u .4645
2.1*

5.0225 -.0078 32.78% -.$24
3.9255 6.83k5 & 0185

9.94%

14 .7252 2.7383 .4518
4.x66

23.6465! .1667
8.2232

P.W9
r2.4g31

u l.cwo o l.mw o l.cux o

ul.u@- Z);EI=Q

0 0 0 0 “o 0 0
.1.3391 2.141a -2.5582

1 -.3006 2.6772 .14q -IJ..3779-.1705
-1.3324

wM38
1.4053

-l@+
-.m

2 5.0*9 .2364 d8.6533 -.* S.W9
-LOO03

3 -.2561
.lg72 1.4%2

6.8u23 .24g6 -U1.zz -.If58 a. 8393
..5501 -K@

4
2.&wf

-.2928 7.- .l’@5 -14.lA2 Al.? -’z.k162
-.0288 -1.gw 2.*

5 -.=947 8.rnL3 .04yj’ -4.3930 .Z@’
.3M

-30.ol&5

6
-2.2833

..XQ4
.45gl

T.@@ -.* 5.93443 .-3 -3u493
1.0334 -1.9248 -1.7’115

7 -.w6 6.9zL5 -.2339 3.4.4$25 .~ -1.9.IS67
L4P8 ..#u -2.9417

8 .0920 5.6493 -.*ED W* -.0409 5.1045
1.M36 .@l’ -2.62M

9 .Om 4.2248 -.27W Z9.39?7 -.@ ZM+92
2.~~ I..** -.9652

10 .1759 2.eky) -.1744 16.1423 ..m2 34.8m2
2.34U. 2.6292 1.2&uI

U. .3= 1.6X34 .w38 11.0231 -.* 30.8241
2.4537

.4956
3.3640 3.2Y17

12 .’@+ .- 5.m .cn47 w.-
2.%83 3.7635 4.3778

u .6628 .26% .4760 2.uh6 .W98 7.’f@f
2.5274 3.9X54

IA
5.l!i08

.833.3 .035g .m .Zw .* ~= 1.Z?14
2.5338 3.9444 .

s Z.m 0 0 0 1.U.W3 o

.-

.

.

.

.

.



NACA TN 3459 57

!cAHLEIv*. Concld.dl

MoDEmsuIm mRmm3mTmu~ BEM8urm KoiEARM.4ssAEDmnmlm2 m2mmImm

taticm r~ TI’ Yl” Y2 %2: %2” Y3 T3’ Y3’

()
== M1-E); Er. ql-~

o 0 0 0 0 0 0
-l.$@ 1.aeq

1 -.091.2
-2.Z572

2.u68 .* -8.WD
-1.2273

-.W5 a.7677
1.N53

2 -.l~ k.ual .=
-.W

---
-15.2639 -.2M

.*3
m. &m

3 -.2366
1.OW

-.5675
S.8470 .2332 -17.1710

-.8344
-.W 21.~

4 -.*3
2.4377

7.0565 .1* -u.@% .0265
-.09&

-1.3903
-1.~ 2.3%8

5 -.28J8 7.6765 .o@ A.k412 .1* -m.39@
.4m -am

6 -.a33
.W

7.- -@759 3.01.65 .241.9
.99

-32.*
.1.92&

7
-1.1742

-.1- ?.m -.2245 Il.E@% .1637
1.ml.3

.-q.19&
-1.~

8 -.o~ 6.uI_8
-2.6558

-.2813 17.qyI -.olyi -L 5876
1.7572 .Old

9 4.al.h
-2.*

.0233 -.2&2 w. 8367 -.x@ 21..2839
2.IX6

10 .lf$l~
1.317rl -1Ju152

3.41% -.m 17.@32 -au 34.8)49
2.3463 2.4g36 .8298

U .3179 ~m 2.N -.0264 33.0%6 -.2359 34.549s

u? .W
3.3583 3.0677

1.C6W .lg75 7.4790 -.0314
2.56V

23.7a

.6!96
3.%- 4.6w

v .7729 .@y3 2.8s17 .~ 10.Zgfi
2.5883 hx%~

U! .- .@7
S.*X

.7z61 .- .6335 1.7519
2.y3* 4.1o79

15 1.W o
5.~2

IAxOo o l.cFxa o

m-@- 2);H- EqJl -=)

o 0 0 0 0 0 0
-1.Uz2 1.3728

1 -.@@
-1.5y5cl

IA218 .Wv +.2312 -.lofl Il.&f32
-Lozq 1.0305

2 -.1433 2.8943 .lf02
-.7877

+.6o16 -.1562 18.$034
-1.~q .40= .k2%

3 -.2983 4.2W2 .1818 -u.9049
-.5499

-.W-r 16.7673

k
-3753 l.ps

-.s56 5JH78 .I.&u -II.&l
-.lw

-.oqk !3.7-
-1.m

5 -.@@l 6.5&zL
1.@22

.Om -7.6M .0975
.23% -1.6078

-9.3545

6
1.~

-.2323 6.8535 -.OI.93 -1.~~ .18A -21.04$o
.6908 -1.7061

-.lm2 6.X3
-.0748

7 -.um. 5.6793 .1774
1.1511

-23.0*
-1.3297 -1.sm

8 -.W 6.5933 -.2216 u. 53%3 .0741 -u.*8
1.5283 -.!XW .2.3W6

9 -.00s 5.63 -.Z553 17.4783 -.0852 5.3345
L9768 .6h38 -2.0398

10 .ll!& 4.&e8 -.ti L9.39U -.2212 a. q31
2.* .1.9177 -.4364

U. .- 3.5747 -.OW 17.9102 -.=3 X.0753
2.5345 3.0937 l.fiq’

12 .4732 2.2985 .M18 13.%72 -.lal 36.W15
2.68W 3.9934 4.3%3

u .6277 1.~17 .3878 T.6T4> .1683 24.6765
2.7669 k.pp 5.9W

14 .- .3& .6e&2 2.3373 .@@ am
2.7912 4.6’Hs 6.5395

u l.@xa o 1.WW o l.ccOo o



!l!m5V ul
03

n

1

2

3

o
1

;
J+

s

o
1
2

3
4
5

0
1
2

3
4
5

%.

I Iilnearmass d
Udfm’m I!!5ss em stiffnmsalrcributions Btlffnesaaistributti

E=o$ i?. lrl$

r=o

o

.$0279

.08axJ

.Ollp

.Cm09

.C0352

o
-.oi?%zl

:%
.01745
.#332

o
-.00209
---
.59W
.u228
.Olpl

ygg

.0982

.01Z23

.CQlx

.Wxq

.Cnll.l
-.1o4111
.95?3

i.W7

-:=

-.0M28

-:38
1.W9%
.W@

-.02126

I (%=%=0)

r = 0.1

-2.9938’3

3.59554’
.YW+
.0f6z
.02aM
.Cwal

-3.cQo08
-5.12vm

7.39936
1.06367

.W@l

.ukn

.3.cmoo2
-4J.lE@
-6.~w
x?.lk~2
2.o1361
.m

i?=q I E=@ I E.@

r = 0.5
I

r.1 r=o

.C@3

-1.-
.2.7258.I
Lalfm
nap

.-
-o&)$

.l.yxm)
-2.049W
-pJ5Jl:

l:31m3
.41%14

-3.oomo
3.!m95

.321.28

:%%
.Olml

-3.000m
-5.17g&
7.51089
I.w
-my
.W33

-3.-
-4. W9
-5.98322
12.c6-p9
2.278%7
.74647

0.38847

.579%

.02942

.00%

.cw53
-.cm53

.21916

.31.2m

.4*8

.028gg

.CQ216

.caw

.1*

.a031

.23&2
:~~

.M13n

O.*

.57W

.03739
cm@+
.cql

-.W

.P/x
yJ’4.J

.00.?.41

.00098

.15854

.208M

:%X
.02&14
JxK@

, .



. * * . 1

!cmLEVI

II % I

I



Cantilever beams
m
o

1------’
//

&

Hinged beams

I
uniform

I
tlJJ~e~II

-

d---
Figure 1.- BeeIIE treated by both the “exact” and Reyleigh msthoda.

. t . .



.

‘“ ------- ,

L?



Mode

2.0

Of a

$’

.

, .



, ,

,

I

, f

5

Mode

In / lstj

2nd
_. —-—

_— _—-—

———
1+ —————— 3rd

I
o [

.5 1

1.0
1

1.5 I

()

JL2
2.0

%1

of Unifom and “line~’f hinged beq

Offset.

F’igu2.e 4.- Comparison



64

50 “

45

ho

35

30

()

@&*

%1

25 ,

20:

15

10

5

1+

~-modeexpansion
—— Rayleighapproach
—–— Rayleighapproach

NACATN 3459

Mode

/

(NRcantilevermode ) /
(pendulummode) //

1st

#
/

2nd

jrd

o’
I I I I 1 1 I

5 10 15 20” 25 30 33-

.

.

Figure ~.- Effect of rotational speed on the bending frequencies of a
uniform cantilever beam.



NACATN 3459 65

.

5!

1!!

3!

1(

I

l—

(

$mode expansion
—— Rayleif!happroach
‘–— Rayleighapproach

(
(

/

Mode

NR cantilevermode )
pendulummode )

// /

1

1st

2nd

3rd

1 I I I 1 I

5
I

10 15 20 25
/r7Y2

30 35

(-)%m~

Figure 6.- Effect of rotational speed on the bending frequencies of a
cantilever besm with linear mass and stiffness distribution.



66 NACAm 3459

50

45

M

35

3C

()

%2
%R

25

2C

l!

1(

c.

1+

(

Uniform cantilever
— — ‘Linear”cantileveJ
————Uniform cantilever

— 3‘LtiearH cantilever

s-mode expansion ,/

A

.

Mode

1st

Rayleighapproach /

/

//

/

/

//

—

2nd
.

—
-.

3rd ~

I I I I I I L

5 10 15 20 25 30 35

()
=2

%1

Figure 7.- Comparison of frequencies of
beams with zero

uniform and “linear” cantilever
offset.



‘AQ m3439
.

.
67

.

+

.

FigJ&e

2@

()

,> 2J&

%3

120

80

40-

1 — 2M

3Pd

---J_.
24~

4’-.= irequemles ofI

a-“~ c~~i~everbmat the tip and with zem ofyset. r

= ,$Q&=-%&.

-—



NACATN *59
68

3

2C

12

8

1-

0

Mode

— 6-modeexpansion
—— .Rayleighapproach

r=l—
r = o.

—

/j2A$
r=l
r = 0.5

= 0.5
r-l

r

-==-

‘&u@lieexpansion

and Ra?leighapproach

1st

2nd

3rd

I I I I 1

J.! .8
1

1.2 1.6 2.0 2.4

Figure 9.- Bending frequencies of a uniform hinged beam with

the tip and tith zero offset. r = ‘iP ‘ss .
Beam WLSS

a mass ELt

.

.

.



NACA TN 3459
69

Mode

.

.

.

.

20

12

/

I.at

—6-rode’ expansion
——Rayleigh approach

4 –

6-modeexpansion
1- and Rayleigh approach

2nd

jrd

o

Figure 10.- Bentkkg
th@ tip and @th

rotational-s~ed

I 1 I I f
20 Lo

I
80 100

H

Zp

(m%),

frequencies of a uniform hinged beam with a mss at
zero offset as a function of cantilever-be=

parameter. r = Tip mass

E3eammaSS “



.

70 NACA TN 3439

Figure

a3

180

l&o

100

60

90

70

50

30

30

al 20

10

0 .2 .8 1.0

1.1. - Bending freqy.encycoefficients an for hinged beams

linear mass and stiffness distributions.

.

.

.

.

with



10P
NACA TN 3459

.

.-

KO
3

.

.

.
Figure 12.- Zero-offset

with linear

%
~

Southwell coefficient K& for hinged besms

mass and stiffness distributions.

71



72 NACA TN 3459

%2

.

KIO

o .1 *2 .3 A .5

~
%

Figure 13.- Offset-correction factors for

for hinged beams with linear mass ard

.6 .7 .8 .9 1.0

Southwell

stiffness

coefficients Zln

distributions.

●

w

.



NACA TN 3459 73

a3

.

.

110

90

70

!50

30

45

ho

35

30

25

20

15

8

7

6

al
5

h’

?
“o

Figure 14. -

.1 .2 .3 ●4 .5 .6

$
0

Bending frequency coefficients
with linear mass and stiffness

.7 .8 “9 1.0

an for cantilever beams

distributions.



74 NACA TN 3459

K.
3

K02

18

16

14

12

10

8

?.0

6.5

6.o

5.5

5.0

4s

4.0

1.30

1.25

1.20

1.15

●

Figure 15.- Zero-offset Southwell

with linear mass and

coefficients ~ for cantilever beams

stiffness distributions.



NACA TN 3459 75

.

.

26.

22

K13

18

14

.

.

8.5

8.(

7.5

7.0

6.5

L,
.

2.0

1.9

1.8

1.7

1.6

1.5

Figure 16. - Offset-correction factors for Southwell coefficients Rln

for cantilever beams with linear maSS and stiffness distributions. -



76 NAC!ATN 3439

.

2

‘3

2
e2

70

60

50

912

25

20

15

4

2

0
0 .8 1.2 1.6 2

.

4

.

r

Figure 17.- Bending frequency coefficients for nonrotating uniform canti-

lever beams with a mass at the tip. r = ‘ip ‘ss .
Real mass



NACA TN 3459

.

77

K03

●

✎

%

Figure 18. -

55

35

15

20

15

10

5

1.20

1.19

1.18
L1 .>

r

Zero-offset Southwell coe~ficients

beam with a mass at the tip. r .

for a uniform

Tip _SS

Beam nass”

L.u

cantilever



78 NACA TN 3459

032

1s .

95

85

2
‘1

52

47

u

37

IA

lh

12

10

.

.

.

0 A <8 1.2 1.6 2.0

r

Figure 19. - Bending frequency coefficients for nonrotating uniform canti- -

lever beams with a mass at the tip. r =
Tip ~SS .
Beam mass .



11P

.

.

.

NACAT’N 3459 79

225

125

25

95

55

15

25

-.
0 ●4 ●8 1.2 1.6 2.0

r

Figure 20.- Zero-offset Southwell coefficients for a uniform hinged besm

TiP _SSwith a mass at the tip. r =
Beam mass”



83 NACATN 3459

.

.

ICIO

2.0

108

1.6

~J4

1.2

1.0
‘o .5

H+

I

J
I

..--

)b

1.0

.

.

I’igure21.- Offset-correction factors for Southwell coefficients for the
pendulum mode of hinged beams with linear mass distribution plus a
mass at the tip.

.

.



NACA TN 3459 81

K03‘

.07”

● 05

.03

.16

K02’ .12

,.08

Kol

●5

‘ .4

.3
●3 o ●5

EIt
1.0

EIO

(a) Cmtilever be-titi line~sttifiess distribution.

l?igure22.- A new rotating beam frequency coefficient which is essentially
independent of beam mass distribution.



82 NAM m 3459

.100

075

● 050

.25

K02‘ ● 20

.15

Kf01

1.30

1.25

.1.20

1*15

(b)

.

o

EHnged beams with

Figure

.5
EI~

~

linear stiffness

22.- Concluded.

1.0

distribution.

*

0.



I . * v

L

Figure

Tip

2nd Mode

23.- Bending males of nonrotitinghi,nge~beams with linem msss
snd stiffnessdistributions.

,,



1st Mode

k

‘Et
/

❑o
=1

/#A

.+?+

3rd Mod e

./r-

I
“Foot Tip

! Figure 24.- Em&l.ng ties of nonrotating catilever beams
mass and stMfness distributio~

I

I

with linear



NACA TN 3459

.

.

-. 81 I I I I # I I I 1 J

?

.

8
i:o

.8

.6

.4

.2

0

-. 2

-. k

-. 6

1 I I I I 1 I I t I I

40~
.3 . .6 .7 .8 .9 1.0

F

Figure 25. - Comparison of bending modes of a rotating and
uniform hinged beam.

nonrotating



t%
NACATN 3459

.6

t

— — Nonrotatfng

.4
t

)= .706

—

“1

.2 _

Y3 o /n

2-.

-. 41 I I I I I t I I I I

1.0 -

.8 .

.6_

.4 -

.2 - //

Y~ o

2 _-.

-. 41 I I I I I I I I r I

1.0 –

.8-

.6-

.4-

.2.

Y~ o

-.2-

-.b~—u——
0 .1 .2 .3 . ●7 .8 .9 lso

26. - Comparison of bending modes for a rotating and nonrotating
hinged beam with linear mass and stiffness distribution.

*

.

.—

-.
F

“



12P

.

.

NACA TN 3459

73

I I I I f 1 I I I I-. 8L

1.0

.8

1

— .W.q& = 6)

.6
——iYonrotating

/
.4 -

.2 -

Y2 o

-. 2 -

-. 4 -

-. 6-
\.

I I I I 1 f I I I I
-. 8’

1.0 ~

.8-

Yl .6-

.4-

.2-

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.’J

Figure 27. - Comparison of bending modes of a rotating and nonrotating
uniform cantilever bcam,



NACATN 3459

.
1.0-

(“Rotating~
.8- ml 1

= 5.91

— — Nonro@ting

.6-

.4- ——

.2-

73 0-

-..2–

Y2

1*O–

.%– .—

.6-

.4-

.2-

0

-.2 – / -. .,
~~

I I I I I I I I I
-. 4’ I

l.o– —

.8-

r~ .6-

.4-

.2-

0 .1 .2 .3 .4 .5 .6 .7 98 .9 1.O
z

Figure 28. - Comparison of bending modes of a rotating and nonrotating
cantilever besm with linear mass and stiffness distribution.
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Figure 29.- Conrparfsonof bending modes of a rotating and nonrotating
uniform hinged beam with a tip mass equal to the mass of the beam.
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Figure 30.- Conrparimn of bending mode~ of a rotating and nonrotating
uniform cantilever beam with a mass at the tip.
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